Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6379, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316310

ABSTRACT

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Subject(s)
Ecosystem , Permafrost , Seasons , Arctic Regions , Climate Change
2.
Proc Natl Acad Sci U S A ; 114(50): E10622-E10631, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29208716

ABSTRACT

Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

3.
Ambio ; 46(Suppl 1): 81-93, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116688

ABSTRACT

The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.


Subject(s)
Climate Change , Ecological Parameter Monitoring , Meteorological Concepts , Arctic Regions , Greenland , Ice Cover , Permafrost , Snow , Tundra
SELECTION OF CITATIONS
SEARCH DETAIL
...