Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Magn Reson Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775024

ABSTRACT

PURPOSE: Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle. This study presents the development and pioneering utilization of 1H-DW-MRS in the prostate, accompanied by in vitro studies to support interpretations of in vivo findings. METHODS: Nine healthy volunteers underwent a prostate MR examination (mean age, 56 years; range, 31-66). Metabolic complexation was studied in vitro using solutions with major compounds found in prostatic fluid of the lumen. DW-MRS was performed at 3 T with a non-water-suppressed single-voxel sequence with metabolite-cycling to concurrently measure metabolite and water signals. The water signal was used in postprocessing as a reference in a motion-compensation scheme. The spectra were fitted simultaneously in the spectral and diffusion-weighting dimensions. Apparent diffusion coefficients (ADCs) were derived by fitting signal decays that were assumed to be mono-exponential for metabolites and biexponential for water. RESULTS: DW-MRS of the prostate revealed relatively low ADCs for Cho and Cr compounds, aligning with their intracellular location and higher ADCs for citrate and spermine supporting their luminal origin. In vitro assessments of the ADCs of citrate and spermine demonstrated their complex formation and protein binding. Tissue concentrations of MRS-detectable metabolites were as expected for the voxel location. CONCLUSIONS: This work successfully demonstrates the feasibility of 1H-DW-MRS of the prostate and its potential for providing valuable microstructural information.

2.
Invest Radiol ; 59(7): 519-525, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38157433

ABSTRACT

BACKGROUND: Accurate detection of lymph node (LN) metastases in prostate cancer (PCa) is a challenging but crucial step for disease staging. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) enables distinction between healthy LNs and nodes suspicious for harboring metastases. When combined with MRI at an ultra-high magnetic field, an unprecedented spatial resolution can be exploited to visualize these LNs. PURPOSE: The aim of this study was to explore USPIO-enhanced MRI at 7 T in comparison to 3 T for the detection of small suspicious LNs in the same cohort of patients with PCa. MATERIALS AND METHODS: Twenty PCa patients with high-risk primary or recurrent disease were referred to our hospital for an investigational USPIO-enhanced 3 T MRI examination with ferumoxtran-10. With consent, they underwent a 7 T MRI on the same day. Three-dimensional anatomical and T2*-weighted images of both examinations were evaluated blinded, with an interval, by 2 readers who annotated LNs suspicious for metastases. Number, size, and level of suspicion (LoS) of LNs were paired within patients and compared between field strengths. RESULTS: At 7 T, both readers annotated significantly more LNs compared with 3 T (474 and 284 vs 344 and 162), with 116 suspicious LNs on 7 T (range, 1-34 per patient) and 79 suspicious LNs on 3 T (range, 1-14 per patient) in 17 patients. For suspicious LNs, the median short axis diameter was 2.6 mm on 7 T (1.3-9.5 mm) and 2.8 mm for 3 T (1.7-10.4 mm, P = 0.05), with large overlap in short axis of annotated LNs between LoS groups. At 7 T, significantly more suspicious LNs had a short axis <2.5 mm compared with 3 T (44% vs 27%). Magnetic resonance imaging at 7 T provided better image quality and structure delineation and a higher LoS score for suspicious nodes. CONCLUSIONS: In the same cohort of patients with PCa, more and more small LNs were detected on 7 T USPIO-enhanced MRI compared with 3 T MRI. Suspicious LNs are generally very small, and increased nodal size was not a good indication of suspicion for the presence of metastases. The high spatial resolution of USPIO-enhanced MRI at 7 T improves structure delineation and the visibility of very small suspicious LNs, potentially expanding the in vivo detection limits of pelvic LN metastases in PCa patients.


Subject(s)
Contrast Media , Lymphatic Metastasis , Magnetic Resonance Imaging , Magnetite Nanoparticles , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Aged , Lymphatic Metastasis/diagnostic imaging , Middle Aged , Dextrans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Reproducibility of Results , Sensitivity and Specificity , Ferrosoferric Oxide , Magnetic Iron Oxide Nanoparticles
4.
Magn Reson Med ; 89(5): 1741-1753, 2023 05.
Article in English | MEDLINE | ID: mdl-36572967

ABSTRACT

PURPOSE: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites. METHODS: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering. For the removal of the water signal, we compared Löwner tensor-based blind source separation (BSS) and Hankel Lanczos singular value decomposition techniques. Absolute metabolite levels were quantified with LCModel and the results were statistically analyzed to compare the water removal methods and conventional water-suppressed MRSI. RESULTS: The post-processing algorithms successfully removed the water signal and its sidebands without affecting metabolite signals. The best water removal performance was achieved by Löwner tensor-based BSS. Absolute tissue concentrations of citrate in the peripheral zone derived from water-suppressed and unsuppressed 1 H MRSI were the same and as expected from the known physiology of the healthy prostate. Maps for citrate and choline from water-unsuppressed 3D 1 H-MRSI of the prostate showed expected spatial variations in metabolite levels. CONCLUSION: We developed a robust relatively simple post-processing method of water-unsuppressed MRSI of the prostate to remove the water signal. Absolute quantification using the water signal, originating from the same location as the metabolite signals, avoids the acquisition of additional reference data.


Subject(s)
Prostate , Water , Male , Humans , Prostate/diagnostic imaging , Water/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Citrates/metabolism , Citric Acid/metabolism , Algorithms , Brain/metabolism
5.
Article in English | MEDLINE | ID: mdl-35321886

ABSTRACT

INTRODUCTION: Impaired awareness of hypoglycemia, clinically reflected by the inability to timely detect hypoglycemia, affects approximately 25% of the people with type 1 diabetes. Both altered brain lactate handling and increased cerebral blood flow (CBF) during hypoglycemia appear to be involved in the pathogenesis of impaired awareness of hypoglycemia. Here we examine the effect of lactate on CBF during hypoglycemia. RESEARCH DESIGN AND METHODS: Nine people with type 1 diabetes and normal awareness of hypoglycemia underwent two hyperinsulinemic euglycemic-hypoglycemic (3.0 mmol/L) glucose clamps in a 3T MR system, once with sodium lactate infusion and once with sodium chloride infusion. Global and regional changes in CBF were determined using pseudocontinuous arterial spin labeling. RESULTS: Lactate (3.3±0.6 vs 0.9±0.2 mmol/L during lactate infusion vs placebo infusion, respectively) suppressed the counter-regulatory hormone responses to hypoglycemia. Global CBF increased considerably in response to intravenous lactate infusion but did not further increase during hypoglycemia. Lactate also blunted the hypoglycemia-induced regional redistribution of CBF towards the thalamus. CONCLUSIONS: Elevated lactate levels enhance global CBF and blunt the thalamic CBF response during hypoglycemia in patients with type 1 diabetes, mimicking observations of impaired awareness of hypoglycemia. These findings suggest that alteration of CBF associated with lactate may play a role in some aspects of the development of impaired awareness of hypoglycemia. TRIAL REGISTRATION NUMBER: NCT03730909.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Cerebrovascular Circulation/physiology , Diabetes Mellitus, Type 1/complications , Glucose Clamp Technique , Humans , Hypoglycemia/chemically induced , Lactic Acid/adverse effects
6.
Cancers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34439188

ABSTRACT

Increased glucose and choline uptake are hallmarks of cancer. We investigated whether the uptake and conversion of [2H9]choline alone and together with that of [6,6'-2H2]glucose can be assessed in tumors via deuterium metabolic imaging (DMI) after administering these compounds. Therefore, tumors with human renal carcinoma cells were grown subcutaneously in mice. Isoflurane anesthetized mice were IV infused in the MR magnet for ~20 s with ~0.2 mL solutions containing either [2H9]choline (0.05 g/kg) alone or together with [6,6'-2H2]glucose (1.3 g/kg). 2H MR was performed on a 11.7T MR system with a home-built 2H/1H coil using a 90° excitation pulse and 400 ms repetition time. 3D DMI was recorded at high resolution (2 × 2 × 2 mm) in 37 min or at low resolution (3.7 × 3.7 × 3.7 mm) in 2:24 min. Absolute tissue concentrations were calculated assuming natural deuterated water [HOD] = 13.7 mM. Within 5 min after [2H9]choline infusion, its signal appeared in tumor spectra representing a concentration increase to 0.3-1.2 mM, which then slowly decreased or remained constant over 100 min. In plasma, [2H9]choline disappeared within 15 min post-infusion, implying that its signal arises from tumor tissue and not from blood. After infusing a mixture of [2H9]choline and [6,6'-2H2]glucose, their signals were observed separately in tumor 2H spectra. Over time, the [2H9]choline signal broadened, possibly due to conversion to other choline compounds, [[6,6'-2H2]glucose] declined, [HOD] increased and a lactate signal appeared, reflecting glycolysis. Metabolic maps of 2H compounds, reconstructed from high resolution DMIs, showed their spatial tumor accumulation. As choline infusion and glucose DMI is feasible in patients, their simultaneous detection has clinical potential for tumor characterization.

7.
Hum Brain Mapp ; 41(4): 1017-1029, 2020 03.
Article in English | MEDLINE | ID: mdl-31721369

ABSTRACT

Parkinson's disease is characterized by bradykinesia, rigidity, and tremor. These symptoms have been related to an increased gamma-aminobutyric acid (GABA)ergic inhibitory drive from globus pallidus onto the thalamus. However, in vivo empirical evidence for the role of GABA in Parkinson's disease is limited. Some discrepancies in the literature may be explained by the presence or absence of tremor. Specifically, recent functional magnetic resonance imaging (fMRI) findings suggest that Parkinson's tremor is associated with reduced, dopamine-dependent thalamic inhibition. Here, we tested the hypothesis that GABA in the thalamocortical motor circuit is increased in Parkinson's disease, and we explored differences between clinical phenotypes. We included 60 Parkinson patients with dopamine-resistant tremor (n = 17), dopamine-responsive tremor (n = 23), or no tremor (n = 20), and healthy controls (n = 22). Using magnetic resonance spectroscopy, we measured GABA-to-total-creatine ratio in motor cortex, thalamus, and a control region (visual cortex) on two separate days (ON and OFF dopaminergic medication). GABA levels were unaltered by Parkinson's disease, clinical phenotype, or medication. However, motor cortex GABA levels were inversely correlated with disease severity, particularly rigidity and tremor, both ON and OFF medication. We conclude that cortical GABA plays a beneficial rather than a detrimental role in Parkinson's disease, and that GABA depletion may contribute to increased motor symptom expression.


Subject(s)
Motor Cortex/metabolism , Muscle Rigidity/metabolism , Nerve Net/metabolism , Parkinson Disease/metabolism , Thalamus/metabolism , Tremor/metabolism , gamma-Aminobutyric Acid/metabolism , Aged , Creatine/metabolism , Dopamine Agents/pharmacology , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Motor Cortex/diagnostic imaging , Muscle Rigidity/diagnostic imaging , Muscle Rigidity/etiology , Nerve Net/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Thalamus/diagnostic imaging , Tremor/diagnostic imaging , Tremor/drug therapy , Tremor/etiology
8.
Cortex ; 121: 135-146, 2019 12.
Article in English | MEDLINE | ID: mdl-31622899

ABSTRACT

Disruptive behavior is associated with societally and personally problematic levels of aggression and has been linked to abnormal structure and function of fronto-amygdala-striatal regions. Abnormal glutamatergic signalling within this network may play a role in aggression. However, disruptive behavior does not represent a homogeneous construct, but can be fractionated across several dimensions. Of particular interest, callous-unemotional (CU) traits have been shown to modulate the severity, neural and behavioural characterisation, and therapeutic outcomes of disruptive behaviour disorders (DBDs) and aggression. Further, individuals showing disruptive behavior differ to the extent that they engage in subtypes of aggression (i.e., proactive [PA] and reactive aggression [RA]) which may also represent distinct therapeutic targets. Here we investigated how glutamate signalling within the fronto-amygdala-striatal circuitry was altered along these dimensions in youths showing disruptive behavior (n = 140) and typically developing controls (TD, n = 93) within the age-range of 8-18 years. We used proton magnetic resonance spectroscopy (1H-MRS) in the anterior cingulate cortex (ACC), striatum, amygdala and insula and associated glutamate concentrations with continuous measures of aggression and CU-traits using linear mixed-effects models. We found evidence of a dissociation for the different measures and glutamate concentrations. CU traits were associated with increased ACC glutamate ('callousness': b = .19, t (108) = 2.63, p = .01, r = .25; 'uncaring': b = .18, t (108) = 2.59, p = .011, r = .24) while PA was associated with decreased striatal glutamate concentration (b = -.23, t (28) = -3.02, p = .005, r = .50). These findings suggest dissociable correlates of CU traits and PA in DBDs, and indicate that the ACC and striatal glutamate may represent novel pharmacological targets in treating these different aspects.


Subject(s)
Aggression/psychology , Emotions/physiology , Empathy/physiology , Problem Behavior , Adolescent , Amygdala/physiopathology , Child , Corpus Striatum/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male
9.
PLoS One ; 14(10): e0223702, 2019.
Article in English | MEDLINE | ID: mdl-31603925

ABSTRACT

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi-LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid/metabolism , Adult , Creatinine/metabolism , Female , Gray Matter/metabolism , Humans , Male , Metabolome , Signal-To-Noise Ratio
10.
Transl Psychiatry ; 9(1): 225, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31515486

ABSTRACT

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with childhood onset, and is characterized by intrusive thoughts and fears (obsessions) that lead to repetitive behaviors (compulsions). Previously, we identified insulin signaling being associated with OCD and here, we aim to further investigate this link in vivo. We studied TALLYHO/JngJ (TH) mice, a model of type 2 diabetes mellitus, to (1) assess compulsive and anxious behaviors, (2) determine neuro-metabolite levels by 1 H magnetic resonance spectroscopy (MRS) and brain structural connectivity by diffusion tensor imaging (DTI), and (3) investigate plasma and brain protein levels for molecules previously associated with OCD (insulin, Igf1, Kcnq1, and Bdnf) in these subjects. TH mice showed increased compulsivity-like behavior (reduced spontaneous alternation in the Y-maze) and more anxiety (less time spent in the open arms of the elevated plus maze). In parallel, their brains differed in the white matter microstructure measures fractional anisotropy (FA) and mean diffusivity (MD) in the midline corpus callosum (increased FA and decreased MD), in myelinated fibers of the dorsomedial striatum (decreased FA and MD), and superior cerebellar peduncles (decreased FA and MD). MRS revealed increased glucose levels in the dorsomedial striatum and increased glutathione levels in the anterior cingulate cortex in the TH mice relative to their controls. Igf1 expression was reduced in the cerebellum of TH mice but increased in the plasma. In conclusion, our data indicates a role of (abnormal) insulin signaling in compulsivity-like behavior.


Subject(s)
Brain/metabolism , Compulsive Behavior/metabolism , Insulin/metabolism , Signal Transduction/physiology , Animals , Anxiety/diagnostic imaging , Anxiety/metabolism , Blood Glucose , Brain/diagnostic imaging , Brain-Derived Neurotrophic Factor/metabolism , Compulsive Behavior/diagnostic imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/metabolism , Diffusion Tensor Imaging , Disease Models, Animal , Insulin-Like Growth Factor I/metabolism , KCNQ1 Potassium Channel/metabolism , Magnetic Resonance Spectroscopy , Mice , Proteomics , White Matter/diagnostic imaging
11.
J Magn Reson ; 304: 53-61, 2019 07.
Article in English | MEDLINE | ID: mdl-31102923

ABSTRACT

Good B0 field homogeneity is considered an essential requirement to obtain high-quality MRS data. Many commonly used spectral fitting methods assume that all metabolite signals have Lorentzian or Gaussian shapes. However, B0 inhomogeneity can both broaden the linewidth and modify the lineshape. In this study, it is hypothesized that a realistic metabolite fitting model, which accounts for B0 homogeneity on the basis of the water lineshape, will improve the accuracy of estimation of metabolite concentrations. In-vivo water suppressed/unsuppressed single voxel spectroscopy signals were acquired under three different B0 field homogeneity regimes. Individual realistic basis sets were created for each acquisition. Frequency-domain spectral fitting with LCModel was used to quantify the metabolite concentrations with fitting uncertainties given in terms of the Cramer-Rao lower bound. The quantification results obtained using the water lineshape basis set yielded similar concentrations independent of linewidth and showed a larger fitting error as the linewidth increased. The conventional approach, however quantifies metabolite concentrations with greater variations despite showing a supposedly improved fitting quality. The water lineshape basis set achieved single voxel spectroscopy accuracy that is less sensitive to the linewidth compared to the conventional spectral fitting method for the range of linewidths used in this study, but the precision deteriorated with worsening B0 field inhomogeneity. The beneficial effect was ascribed to a reduction in the number of degrees of freedom when using the water lineshape to generate the basis set.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Adult , Algorithms , Female , Humans , Imaging, Three-Dimensional , Male , Protons , Signal-To-Noise Ratio , Water/metabolism
12.
Diabetologia ; 62(6): 1065-1073, 2019 06.
Article in English | MEDLINE | ID: mdl-31001674

ABSTRACT

AIMS/HYPOTHESIS: Chronic hyperglycaemia in type 1 diabetes affects the structure and functioning of the brain, but the impact of recurrent hypoglycaemia is unclear. Changes in the neurochemical profile have been linked to loss of neuronal function. We therefore aimed to investigate the impact of type 1 diabetes and burden of hypoglycaemia on brain metabolite levels, in which we assumed the burden to be high in individuals with impaired awareness of hypoglycaemia (IAH) and low in those with normal awareness of hypoglycaemia (NAH). METHODS: We investigated 13 non-diabetic control participants, 18 individuals with type 1 diabetes and NAH and 13 individuals with type 1 diabetes and IAH. Brain metabolite levels were determined by analysing previously obtained 1H magnetic resonance spectroscopy data, measured under hyperinsulinaemic-euglycaemic conditions. RESULTS: Brain glutamate levels were higher in participants with diabetes, both with NAH (+15%, p = 0.013) and with IAH (+19%, p = 0.003), compared with control participants. Cerebral glutamate levels correlated with HbA1c levels (r = 0.40; p = 0.03) and correlated inversely (r = -0.36; p = 0.04) with the age at diagnosis of diabetes. Other metabolite levels did not differ between groups, apart from an increase in aspartate in IAH. CONCLUSIONS/INTERPRETATION: In conclusion, brain glutamate levels are elevated in people with type 1 diabetes and correlate with glycaemic control and age of disease diagnosis, but not with burden of hypoglycaemia as reflected by IAH. This suggests a potential role for glutamate as an early marker of hyperglycaemia-induced cerebral complications of type 1 diabetes. ClinicalTrials.gov NCT03286816; NCT02146404; NCT02308293.


Subject(s)
Brain/metabolism , Diabetes Mellitus, Type 1/metabolism , Glutamic Acid/metabolism , Adult , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Female , Glucose Clamp Technique , Humans , Hypoglycemia/blood , Hypoglycemia/metabolism , Magnetic Resonance Spectroscopy , Male , Young Adult
13.
NMR Biomed ; 32(1): e4035, 2019 01.
Article in English | MEDLINE | ID: mdl-30457686

ABSTRACT

PURPOSE: A relatively high signal for choline-containing compounds (total choline, tCho) is commonly found in 1 H MR spectra of malignant tumors, but it is unclear if this also occurs in tumors in the liver. We evaluated the potential of the tCho signal in single voxel 1 H MR spectra of the human liver to assess metastases of colorectal cancers. EXPERIMENT: MR spectra of an 8 cm3 PRESS-localized voxel were obtained at 3 T from the livers of 12 healthy volunteers and from metastatic lesions in 20 patients in two different sessions. To correct for motion artifacts, sequentially recorded spectra were individually phased and frequency aligned before averaging. Spectra were analyzed using LCModel and tissue levels estimated by water referencing. Repeatability was assessed with Bland-Altman analyses. To estimate tumor necrosis, diffusion-weighted imaging of the liver was performed. High resolution magic angle spinning (HRMAS) spectra of tumor and normal liver samples were obtained at 11.7 T. RESULTS: With increasing tumor volumes, tCho levels decreased, indicating a partial volume effect. Mean tCho content in tumors larger than the PRESS voxel (>8 cm3 ) was significantly lower (p < 0.01) than for normal liver: 1.6 (range 0.0-3.4) versus 6.9 (range 4.9-11.1) mmol/kg wet weight, while it was comparable for tumors smaller than 8 cm3 : 7.0 (range 3.8-9.3) mmol/kg. The higher 90th percentile apparent diffusion coefficient value in the larger lesions indicates more necrosis. Measurement repeatability was average in normal livers and poor in tumors. HRMAS did not show substantial differences in choline-containing compounds between normal liver and metastasis. CONCLUSION: An increased tCho content was not observed in 1 H MR spectra of liver metastasis of colorectal cancer, compared with normal liver. This may be due to the background of a high tCho signal in spectra of normal liver or to an intrinsic lower tCho content in these tumors, but is most likely the result of necrosis in metastatic tumor tissue.


Subject(s)
Choline/metabolism , Colorectal Neoplasms/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Liver/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aged , Diffusion Magnetic Resonance Imaging , Humans , Metabolome , Middle Aged , Quality Control , Reproducibility of Results
14.
J Magn Reson ; 297: 51-60, 2018 12.
Article in English | MEDLINE | ID: mdl-30359907

ABSTRACT

Magnetic susceptibility differences between grey matter (GM) and white matter (WM) can potentially affect lineshapes and chemical shifts in single-voxel spectroscopy. This study aimed to investigate the consequences and potential utility of these effects. Spectroscopy voxels were segmented into GM, WM, and cerebrospinal fluid based on T1-weighted images. GM and WM lineshapes were computed using multi-echo gradient-echo images to measure the frequency distribution. Twenty 7 Tesla single voxel spectra with corresponding T1-weighted images were acquired from the frontal and parietal lobes from five healthy human volunteers. Consistent frequency shifts (mean [±SD] 4.9 ±â€¯2.0 Hz) and linewidth differences (2.4 ±â€¯1.5 Hz) between the two tissue types were observed. Directly visible metabolites (creatine, choline, and myo-inositol) exhibited frequency shifts and linewidth differences that were consistent with a linear-weighted summation of their expected GM and WM distribution ratios. The magnetic susceptibility difference between GM and WM had a detectable effect on single-voxel proton spectra, which results in both frequency shifts and lineshape broadening. This effect can be used to estimate the relative metabolic distribution in the GM and WM for directly observable metabolites. Fractional distributions estimated with this method demonstrated good agreement with literature values for the selected metabolites.

15.
J Transl Med ; 13: 114, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25890200

ABSTRACT

BACKGROUND: Docetaxel is one of the most frequently used drugs to treat breast cancer. However, resistance or incomplete response to docetaxel is a major challenge. The aim of this study was to utilize MR metabolomics to identify potential biomarkers of docetaxel resistance in a mouse model for BRCA1-mutated breast cancer. METHODOLOGY: High resolution magic angle spinning (HRMAS) (1)H MR spectroscopy was performed on tissue samples obtained from docetaxel-sensitive or -resistant BRCA1-mutated mammary tumors in mice. Measurements were performed on samples obtained before treatment and at 1-2, 3-5 and 6-7 days after a 25 mg/kg dose of docetaxel. The MR spectra were analyzed by multivariate analysis, followed by analysis of the signals of individual compounds by peak fitting and integration with normalization to the integral of the creatine signal and of all signals between 2.9 and 3.6 ppm. RESULTS: The HRMAS spectra revealed significant metabolic differences between sensitive and resistant tissue samples. In particular choline metabolites were higher in resistant tumors by more than 50% with respect to creatine and by more than 30% with respect to all signals between 2.9 and 3.6 ppm. Shortly after treatment (1-2 days) the normalized choline metabolite levels were significantly increased by more than 30% in the sensitive group coinciding with the time of highest apoptotic activity induced by docetaxel. Thereafter, choline metabolites in these tumors returned towards pre-treatment levels. No change in choline compounds was observed in the resistant tumors over the whole time of investigation. CONCLUSIONS: Relative tissue concentrations of choline compounds are higher in docetaxel resistant than in sensitive BRCA1-mutated mouse mammary tumors, but in the first days after docetaxel treatment only in the sensitive tumors an increase of these compounds is observed. Thus both pre- and post-treatment tissue levels of choline compounds have potential to predict response to docetaxel treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Choline/metabolism , Genes, BRCA1 , Mammary Neoplasms, Animal/drug therapy , Mutation , Taxoids/therapeutic use , Animals , Biomarkers, Tumor , Docetaxel , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mice , Proton Magnetic Resonance Spectroscopy
16.
Magn Reson Med ; 74(4): 915-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25264976

ABSTRACT

PURPOSE: Volume selection in (1) H MR spectroscopic imaging (MRSI) of the prostate is commonly performed with low-bandwidth refocusing pulses. However, their large chemical shift displacement error (CSDE) causes lipid signal contamination in the spectral range of interest. Application of high-bandwidth adiabatic pulses is limited by radiofrequency (RF) power deposition. In this study, we aimed to provide an MRSI sequence that overcomes these limitations. METHODS: Measurements were performed at 3 T with an endorectal receive coil. A semi-LASER sequence was equipped with low RF power demanding gradient-modulated offset-independent adiabaticity (GOIA) refocusing pulses with WURST(16,4) modulation, with a 10 kHz bandwidth. RESULTS: Simulations and phantom studies verified that the GOIA pulses select slices with a flat top and sharp edges and minimal CSDE. The sequence timing was tuned to an optimal citrate signal shape at an echo time of 88 ms. Patient studies (n = 10) demonstrated that high quality spectra with reduced lipid artifacts can be obtained from the whole prostate. Compared with PRESS acquisition at 145 ms the signal-to-noise ratio (SNR) of citrate is increased up to 2.6 and choline up to 1.3. CONCLUSION: An MRSI sequence of the prostate is presented with minimized spectral lipid contamination and improved SNR, to facilitate routine clinical acquisition of metabolic data.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prostate/pathology , Signal Processing, Computer-Assisted , Humans , Male , Phantoms, Imaging , Prostatic Neoplasms/pathology , Signal-To-Noise Ratio
17.
FASEB J ; 28(5): 1988-97, 2014 May.
Article in English | MEDLINE | ID: mdl-24500922

ABSTRACT

Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced hepatic triglyceride (HTG) accumulation can be attributed to both DNL stimulation and dietary lipid absorption. The aim of this study was to assess the effects of fructose diet on HTG and ATP content and the contributions of dietary lipids and DNL to HTG. Measurements were performed in vivo in mice by magnetic resonance imaging (MRI) and novel magnetic resonance spectroscopy (MRS) approaches. Abdominal adipose tissue volume and intramyocellular lipid levels were comparable between 8-wk fructose- and glucose-fed mice. HTG levels were ∼1.5-fold higher in fructose-fed than in glucose-fed mice (P<0.05). Metabolic flux analysis by (13)C and (2)H MRS showed that this was not due to dietary lipid absorption, but due to DNL stimulation. The contribution of oral lipids to HTG was, after 5 h, 1.60 ± 0.23% for fructose and 2.16 ± 0.35% for glucose diets (P=0.26), whereas that of DNL was higher in fructose than in glucose diets (2.55±0.51 vs.1.13±0.24%, P=0.01). Hepatic energy status, assessed by (31)P MRS, was similar for fructose- and glucose-fed mice. Fructose-induced HTG accumulation is better explained by DNL and not by dietary lipid uptake, while not compromising ATP homeostasis.


Subject(s)
Dietary Fats/metabolism , Fructose/administration & dosage , Glucose/administration & dosage , Liver/metabolism , Triglycerides/metabolism , Absorption , Adenosine Triphosphate/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diet , Enterocytes/metabolism , Lipogenesis , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL
18.
Magn Reson Med ; 71(1): 26-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23475759

ABSTRACT

PURPOSE: A semi-LASER sequence was optimized for in vivo lactate detection in the prostate. METHODS: The ethical committee waived the need for informed consent to measure 17 patients with high grade prostate cancer on a 3T system. A semi-LASER sequence was used with an echo time of 144 ms and optimized interpulse timing for a spectral citrate shape with high signal intensity. An LCModel basis set was developed for fitting choline, creatine, spermine, citrate, and lactate and was used to fit all spectra in tumor-containing voxels. For patients without detectable lactate, the minimal detectable lactate concentration was determined by adding in all spectra of tumor tissue a simulated lactate signal. The amplitude of the simulated lactate signal was iteratively decreased until its fit reached a Cramér Rao lower bound >20%, which was then set as the patient-specific detection limit. RESULTS: In none of the patients a convincing lactate signal was found. We estimated that on average the lactate levels in high grade prostate cancer are below 1.5 mM (range 0.9-3.5 mM), Interestingly, in one patient with extensive necrosis in the tumor biopsy samples (Gleason score 5+5), large lipid resonances were observed, which originated from the tumor. CONCLUSION: The minimal detectable lactate concentration of 1.5 mM in high grade prostate cancer indicates that if lactate is increased it remains at low concentrations.


Subject(s)
Biomarkers, Tumor/metabolism , Lactic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Biological , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Algorithms , Computer Simulation , Humans , Male , Protons , Reproducibility of Results , Sensitivity and Specificity
19.
PLoS One ; 8(9): e74638, 2013.
Article in English | MEDLINE | ID: mdl-24040301

ABSTRACT

BACKGROUND: Postcancer fatigue is a frequently occurring problem, impairing quality of life. Until now, little is known about (neuro) physiological factors determining postcancer fatigue. For non-cancer patients with chronic fatigue syndrome, certain characteristics of brain morphology and metabolism have been identified in previous studies. We investigated whether these volumetric and metabolic traits are a reflection of fatigue in general and thus also of importance for postcancer fatigue. METHODS: Fatigued patients were randomly assigned to either the intervention condition (cognitive behavior therapy) or the waiting list condition. Twenty-five patients in the intervention condition and fourteen patients in the waiting list condition were assessed twice, at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 matched non-fatigued controls. All participants had completed treatment of a malignant, solid tumor minimal one year earlier. Global brain volumes, subcortical brain volumes, metabolite tissue concentrations, and metabolite ratios were primary outcome measures. RESULTS: Volumetric and metabolic parameters were not significantly different between fatigued and non-fatigued patients. Change scores of volumetric and metabolic parameters from baseline to follow-up were not significantly different between patients in the therapy and the waiting list group. Patients in the therapy group reported a significant larger decrease in fatigue scores than patients in the waiting list group. CONCLUSIONS: No relation was found between postcancer fatigue and the studied volumetric and metabolic markers. This may suggest that, although postcancer fatigue and chronic fatigue syndrome show strong resemblances as a clinical syndrome, the underlying physiology is different. TRIAL REGISTRATION: ClinicalTrials.gov NCT01096641.


Subject(s)
Brain/metabolism , Brain/pathology , Fatigue/therapy , Magnetic Resonance Spectroscopy , Neoplasms/complications , Neoplasms/therapy , Adult , Cognitive Behavioral Therapy , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male , Middle Aged , Quality of Life , Time Factors , Treatment Outcome , Waiting Lists
20.
Neurobiol Aging ; 34(5): 1440-50, 2013 May.
Article in English | MEDLINE | ID: mdl-23273575

ABSTRACT

In patients with Alzheimer's disease (AD) the severity of white matter degeneration correlates with the clinical symptoms of the disease. In this study, we performed diffusion-tensor magnetic resonance imaging at ultra-high field in a mouse model for AD (APP(swe)/PS1(dE9)) in combination with a voxel-based approach and tractography to detect changes in water diffusivity in white and gray matter, because these reflect structural alterations in neural tissue. We found substantial changes in water diffusion parallel and perpendicular to axonal tracts in several white matter regions like corpus callosum and fimbria of the hippocampus, that match with previous findings of axonal disconnection and myelin degradation in AD patients. Moreover, we found a significant increase in diffusivity in specific hippocampal subregions, which is supported by neuronal loss as visualized with Klüver-Barrera staining. This work demonstrates the potential of ultra-high field diffusion-tensor magnetic resonance imaging as a noninvasive modality to describe white and gray matter structural changes in mouse models for neurodegenerative disorders, and provides valuable knowledge to assess future AD prevention strategies in translational research.


Subject(s)
Alzheimer Disease/pathology , Disease Models, Animal , Hippocampus/pathology , Nerve Fibers, Myelinated/pathology , Neurons/pathology , Animals , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...