Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Poult Sci ; 103(6): 103650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555756

ABSTRACT

Dietary ingredient and nutrient composition may affect the efficacy of additives in broilers. Specific feed ingredients can represent dietary challenging conditions for broilers, resulting in impaired performances and health, which might be alleviated by dietary probiotics and postbiotics. We assessed the effects of a Lactobacilli probiotic (Pro) and postbiotic (Post) when added to a standard (SD) and challenge (CD) diet. A completely randomized block study with 2 diets (SD, CD) and 3 additive conditions (Control, Pro and Post) involving 1,368 one-day-old Ross male broilers, equally distributed among 36 pens, from d1 to d42 was conducted. Both diets were formulated to contain identical levels of nutrients, with CD formulated to be richer than SD in nonstarch polysaccharides using rye and barley as ingredients. Readout parameters included growth performance parameters, footpad lesions score, blood minerals and biochemical parameters, and tibia health, strength, and composition. Compared to SD, CD decreased BW (1,936 vs. 2,033 g; p = 0.001), increased FCR (p < 0.01) and impaired tibia health and strength (p < 0.05) at d35, thereby confirming the challenging effect of CD. Pro and Post increased BW in CD (+4.7 and +3.2%, respectively, at d35; P < 0.05) but not in the SD group, without affecting FCR. Independently of the diet, Pro increased plasma calcium, phosphorus and uric acid at d21 (+6.2, +7.4, and +15.5%, respectively) and d35 (+6.6, +6.2 and +21.0%, respectively) (P < 0.05) while Post increased plasma magnesium only at d21 (+11.3%; P = 0.037). Blood bile acids were affected by additives in an age- and diet-dependent manner, with some opposite effects between dietary conditions. Diet composition modulated Pro and Post effects on broiler growth performance. Additionally, Pro and Post affected animal metabolism and leg health diet-dependently for some but not all investigated parameters. Our findings show that the effects of pro- and postbiotics on the growth performance and physiology of broilers can be dependent on diet composition and thus possibly other factors affecting diet characteristics.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Probiotics , Random Allocation , Animals , Chickens/growth & development , Chickens/physiology , Probiotics/administration & dosage , Probiotics/pharmacology , Male , Diet/veterinary , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements/analysis , Lactobacillus/physiology
2.
Anim Nutr ; 10: 319-328, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35891685

ABSTRACT

Myotonic dystrophy-related Cdc42-binding kinase alpha (MRCKα) is an integral component of signaling pathways controlling vital cellular processes, including cytoskeletal reorganization, cell proliferation and cell survival. In this study, we investigated the physiological role of MRCKα in milk protein and fat production in dairy cows, which requires a dynamic and strict organization of the cytoskeletal network in bovine mammary epithelial cells (BMEC). Within a selection of 9 Holstein cows, we found that both mRNA and protein expression of MRCKα in the mammary gland were upregulated during lactation and correlated positively (r > 0.89) with the mRNA and protein levels of ß-casein. Similar positive correlations (r > 0.79) were found in a primary culture of BMEC stimulated with prolactin for 24 h. In these cells, silencing of MRCKα decreased basal ß-casein, sterol-regulatory element binding protein (SREBP)-1 and cyclin D1 protein level, phosphorylation of mTOR, triglyceride secretion, cell number and viability-while overexpression of MRCKα displayed the reversed effect. Notably, silencing of MRCKα completely prevented the stimulatory action of prolactin on the same parameters. These data demonstrate that MRCKα is a critical mediator of prolactin-induced lactogenesis via stimulation of the mTOR/SREBP1/cyclin D1 signaling pathway.

3.
Br J Nutr ; : 1-12, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416139

ABSTRACT

Sixty growing male pigs were used to test the hypothesis that high dietary Ca content reduces P absorption to a greater extent in microbial phytase-supplemented diets via reducing inositol phosphate (IP) degradation and enhancing P precipitation. Pigs were equally allotted over diets with three Ca contents 2·0, 5·8 and 9·6 g/kg with or without microbial phytase (0 v. 500 FTU/kg) in a 2 × 3 factorial arrangement. Faeces and urine were collected at the end of the 21-d experimental period. Subsequently, pigs were euthanised and digesta quantitatively collected from different gastrointestinal tract (GIT) segments. Increasing dietary Ca content reduced apparent P digestibility in all GIT segments posterior to the stomach (P < 0·001), with greater effect in phytase-supplemented diets in the distal small intestine (Pinteraction = 0·007) and total tract (Pinteraction = 0·023). Nonetheless, increasing dietary Ca to 5·8 g/kg enhanced P retention, but only in phytase-supplemented diets. Ileal IP6 degradation increased with phytase (P < 0·001) but decreased with increasing dietary Ca content (P = 0·014). Proportion of IP esters in total IP (∑IP) indicated that IP6/∑IP was increased while IP4/∑IP and IP3/∑IP were reduced with increasing dietary Ca content and also with a greater impact in phytase-supplemented diets (Pinteraction = 0·025, 0·018 and 0·009, respectively). In all GIT segments, P solubility was increased with phytase (P < 0·001) and tended to be reduced with dietary Ca content (P < 0·096). Measurements in GIT segments showed that increasing dietary Ca content reduced apparent P digestibility via reducing IP degradation and enhancing P precipitation, with a greater impact in phytase-supplemented diets due to reduced IP degradation.

4.
Poult Sci ; 100(11): 101413, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34601443

ABSTRACT

The impact of transgenerational effects on growth performance and immunity has not yet been studied extensively within the poultry husbandry sector. An important factor is the impact of the hens on the physical well-being and fitness to the environment of the offspring. This study is the first to investigate the effect of stimulating the maternal innate immune system with lipopolysaccharides (LPS) or ß-glucan on growth performance and immune responses in the next generation. Transgenerational effects and consequences of these maternal treatments were further examined using a necrotic enteritis (NE) challenge model in the offspring. We show that offspring of LPS-treated broiler breeders have a higher feed efficiency from 14 to 21 days of age, that is, the period just after the NE challenge. Moreover, more broiler chickens with intestinal lesions after the NE challenge were found in the offspring of the LPS-treated broiler breeders. Both the LPS and ß-glucan maternal treatments resulted in transgenerational effects on blood-derived monocytes by showing a tendency of decreased IL1ß mRNA levels after ex vivo LPS stimulation. These data are a first indication that broiler breeder hens can affect immune responsiveness and feeding efficiency of their offspring in a transgenerational manner.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animals , Diet , Female , Immunity, Innate , Intestines , Lipopolysaccharides
5.
Dev Comp Immunol ; 114: 103811, 2021 01.
Article in English | MEDLINE | ID: mdl-32750399

ABSTRACT

Recently, we have reported trained innate immunity in laying chicken monocytes. In the present study, we further investigated trained innate immunity of monocytes in layers and broilers. Monocytes of both breeds isolated from blood were trained in vitro with ß-glucan, rec-chicken IL-4 or a combination of both, and restimulated with lipopolysaccharide (LPS), after which inflammation and metabolism-related responses were measured. Training of laying and broiler hen monocytes resulted in increased mRNA levels of IL-1ß, iNOS and HIF-1α, but enhanced surface expression of CD40 and NO production was only observed in layers. Our in vitro study demonstrates that monocytes from different genetic backgrounds can be trained. However, the observed differences suggest a differential effect on immune functionality associated with innate training. Whether these differences in immune functions between layers and broilers have effect on disease resistance remains to be elucidated.


Subject(s)
Chickens/immunology , Monocytes/metabolism , Animals , CD40 Antigens/metabolism , Cells, Cultured , Cellular Reprogramming , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunity, Innate , Interleukin-1beta/metabolism , Interleukin-4/immunology , Lipopolysaccharides/immunology , Monocytes/immunology , Nitric Oxide , Nitric Oxide Synthase Type II/metabolism , beta-Glucans/immunology
6.
Vet Sci ; 7(3)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825152

ABSTRACT

Beta-glucan-stimulated mammalian myeloid cells, such as macrophages, show an increased responsiveness to secondary stimulation in a nonspecific manner. This phenomenon is known as trained innate immunity and is important to prevent reinfections. Trained innate immunity seems to be an evolutionary conserved phenomenon among plants, invertebrates and mammalian species. Our study aimed to explore the training of primary chicken monocytes. We hypothesized that primary chicken monocytes, similar to their mammalian counterparts, can be trained with ß-glucan resulting in increased responses of these cells to a secondary stimulus. Primary blood monocytes of white leghorn chickens were primary stimulated with ß-glucan microparticulates (M-ßG), lipopolysaccharide (LPS), recombinant chicken interleukin-4 (IL-4) or combinations of these components for 48 h. On day 6, the primary stimulated cells were secondary stimulated with LPS. Nitric oxide (NO) production levels were measured as an indicator of pro-inflammatory activity. In addition, the cells were analyzed by flow cytometry to characterize the population of trained cells and to investigate the expression of surface markers associated with activation. After the secondary LPS stimulation, surface expression of colony stimulating factor 1 receptor (CSF1R) and the activation markers CD40 and major histocompatibility complex class II (MHC-II) was higher on macrophages that were trained with a combination of M-ßG and IL-4 compared to unstimulated cells. This increased expression was paralleled by enhanced NO production. In conclusion, this study showed that trained innate immunity can be induced in primary chicken monocytes with ß-glucan, which is in line with previous experiments in mammalian species. Innate immune training may have the potential to improve health and vaccination strategies within the poultry sector.

7.
J Anim Sci Biotechnol ; 11: 53, 2020.
Article in English | MEDLINE | ID: mdl-32477515

ABSTRACT

BACKGROUND: Characterising the regulation of milk component synthesis in response to macronutrient supply is critical for understanding the implications of nutritional interventions on milk production. Gene expression in mammary gland secretory cells was measured using RNA isolated from milk fat globules from 6 Holstein-Friesian cows receiving 5-d abomasal infusions of saline, essential amino acids (AA), or glucose (GG) or palm olein (LG) without (LAA) or with (HAA) essential AA, according to a 6 × 6 Latin square design. RNA was isolated from milk fat samples collected on d 5 of infusion and subjected to real-time quantitative PCR. We hypothesised that mRNA expression of genes involved in de novo milk fatty acid (FA) synthesis would be differently affected by GG and LG, and that expression of genes regulating transfer of tricarboxylic acid cycle intermediates would increase at the HAA level. We also hypothesised that the HAA level would affect genes regulating endoplasmic reticulum (ER) homeostasis but would not affect genes related to the mechanistic target of rapamycin complex 1 (mTORC1) or the integrated stress response (ISR) network. RESULTS: Infusion of GG did not affect de novo milk FA yield but decreased expression of FA synthase (FASN). Infusion of LG decreased de novo FA yield and tended to decrease expression of acetyl-CoA carboxylase 1 (ACC1). The HAA level increased both de novo FA yield and expression of ACC1, and tended to decrease expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). mRNA expression of mTORC1 signaling participants was not affected by GG, LG, or AA level. Expression of the ε subunit of the ISR constituent eukaryotic translation initiation factor 2B (EIF2B5) tended to increase at the HAA level, but only in the presence of LG. X-box binding protein 1 (XBP1) mRNA was activated in response to LG and the HAA level. CONCLUSIONS: Results show that expression of genes involved in de novo FA synthesis responded to glucogenic, lipogenic, and aminogenic substrates, whereas genes regulating intermediate flux through the tricarboxylic acid cycle were not majorly affected. Results also suggest that after 5 d of AA supplementation, milk protein synthesis is supported by enhanced ER biogenesis instead of signaling through the mTORC1 or ISR networks.

8.
J Nutr ; 144(7): 1043-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24812069

ABSTRACT

Urea recycling, with urea originating from catabolism of amino acids and hepatic detoxification of ammonia, is particularly relevant for ruminant animals, in which microbial protein contributes substantially to the metabolizable protein supply. However, the quantitative contribution of urea recycling to protein anabolism in calves during the transition from preruminants (milk-fed calves) to ruminants [solid feed (SF)-fed calves] is unknown. The aim of this study was to quantify urea recycling in milk-fed calves when provided with low-protein SF. Forty-eight calves [164 ± 1.6 kg body weight (BW)] were assigned to 1 of 4 SF levels [0, 9, 18, and 27 g of dry matter (DM) SF · kg BW(-0.75) · d⁻¹] provided in addition to an identical amount of milk replacer. Urea recycling was quantified after a 24-h intravenous infusion of [¹5N2]urea by analyzing urea isotopomers in 68-h fecal and urinary collections. Real-time qPCR was used to measure gene expression levels of bovine urea transporter B (bUTB) and aquaglyceroporin-3 and aquaglyceroporin-7 in rumen wall tissues. For every incremental gram of DM SF intake (g DM · kg(0.75)), nitrogen intake increased by 0.70 g, and nitrogen retention increased by 0.55 g (P < 0.01). Of this increase in nitrogen retention, 19% could be directly explained by urea recycling. Additionally, part of the observed increase in nitrogen retention could be explained by the extra protein provided by the SF and likely by a greater efficiency of postabsorptive use of nitrogen for gain. Ruminal bUTB abundance increased (P < 0.01) with SF provision. Aquaglyceroporin-3 expression increased (P < 0.01) with SF intake, but aquaglyceroporin-7 expression did not. We conclude that in addition to the increase in digested nitrogen, urea recycling contributes to the observed increase in nitrogen retention with increasing SF intake in milk-fed calves. Furthermore, ruminal bUTB and aquaglyceroporin-3 expression are upregulated with SF intake, which might be associated with urea recycling.


Subject(s)
Aquaporin 3/metabolism , Cattle/metabolism , Diet, Protein-Restricted/veterinary , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Rumen/metabolism , Urea/metabolism , Animals , Animals, Inbred Strains , Aquaporin 3/genetics , Cattle/growth & development , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Energy Intake , Feces/chemistry , Gastric Mucosa/growth & development , Gastric Mucosa/metabolism , Gene Expression Regulation, Developmental , Male , Membrane Transport Proteins/genetics , Milk Proteins/metabolism , Netherlands , Nitrogen/analysis , Nitrogen/metabolism , Nitrogen/urine , Nitrogen Isotopes , Plant Proteins/administration & dosage , Rumen/growth & development , Urea/analysis , Urea/urine , Weaning , Urea Transporters
9.
Br J Nutr ; 108 Suppl 2: S247-57, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23107535

ABSTRACT

A comparative non-ruminant species view of the contribution of the large intestinal metabolism to inaccuracies in nitrogen and amino acid absorption measurements is provided to assess potential implications for the determination of crude protein/amino acid digestibility in adult humans consuming lower digestible protein sources. Most of the amino acids in the hindgut are constituents of the microorganisms and significant microbial metabolism of dietary and endogenous amino acids occurs. Bacterial metabolism of nitrogen-containing compounds leads to a significant disappearance of nitrogen in the large intestine. Literature data show that some 79 % of the nitrogen entering the large intestine of the horse is absorbed. For dogs, sows, and growing pigs these estimates are 49, 34 and 16 %, respectively. The coefficient of gut differentiation of humans compares closely to that of dogs while the coefficient of fermentation in humans is the lowest of all non-ruminant species and closest to that of cats and dogs. Large intestinal digesta transit times of humans compare closest to adult dogs. Significant amino acid metabolism has been shown to occur in the large intestine of the adult dog. Use of the growing pig as an animal model is likely to underestimate the fermentation of amino acids in the human large intestine. Based on the significant degree of fermentation of nitrogen-containing components in the large intestine of several non-ruminant species, it can be expected that determination of amino acid digestibility at a faecal level in humans consuming low quality proteins would not provide accurate estimates of the amino acids absorbed by the intestine.


Subject(s)
Diet , Dietary Proteins/metabolism , Digestion , Feces , Ileum/metabolism , Intestine, Large/metabolism , Nitrogen/metabolism , Amino Acids/metabolism , Animals , Gastrointestinal Transit , Humans , Intestine, Large/microbiology , Models, Animal
10.
Int J Biochem Cell Biol ; 44(11): 1791-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22732145

ABSTRACT

Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.


Subject(s)
Diacylglycerol Kinase/metabolism , ErbB Receptors/metabolism , Protein Kinase C/metabolism , Bradykinin/pharmacology , Cell Line, Tumor , Cell Membrane/metabolism , Endosomes/drug effects , Endosomes/metabolism , Enzyme Activation/drug effects , Gene Silencing/drug effects , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Phosphorylation/drug effects , Phosphothreonine/metabolism , Phosphotyrosine/metabolism , Protein Binding/drug effects , Protein Transport/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Uridine Triphosphate/pharmacology
11.
BMC Proc ; 5 Suppl 4: S35, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21645316

ABSTRACT

BACKGROUND: Information about the effects of unsaturated fatty acids (UFA) supplementation on the health and integrity of the mammary gland in lactating dairy cows is lacking. Therefore, the aim of this study was to determine the effects of unprotected dietary UFA on the global expression pattern of genes in the mammary gland tissue of grazing dairy cows, and to translate this information into relevant biological knowledge. METHODS: Twenty-eight Holstein-Friesian dairy cows were randomly assigned to 4 different concentrated UFA-sources for 23 days after which all cows were switched to a non-UFA-supplemented concentrate for an additional 28 days. On the last day of both periods, mammary gland biopsies were taken to study genome-wide differences in gene expression on Bovine Genome Arrays. RESULTS: Supplementation with UFA reduced the concentration of short chain fatty acids (FA), C16 FA and saturated FA in the milk, whereas that of trans-FA increased. One major finding was that canonical pathways associated with remodelling and immune functions of the mammary gland were predominantly down-regulated during UFA supplementation and negatively correlated with the concentration of milk trans-FA. CONCLUSIONS: Supplementing grazing dairy cows with unprotected dietary UFA can affect the remodelling and immune functions of the mammary gland with potential consequences for its integrity and health, as well as milk quality.

12.
J Biol Chem ; 280(11): 9870-8, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15632189

ABSTRACT

Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.


Subject(s)
Cell Membrane/metabolism , Cytosol/metabolism , Diacylglycerol Kinase/metabolism , GTP-Binding Proteins/metabolism , Protein Kinase C/metabolism , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Bradykinin/metabolism , COS Cells , Cell Line, Tumor , Cytoplasm/metabolism , DNA, Complementary/metabolism , Glutathione Transferase/metabolism , Glycerol/chemistry , Green Fluorescent Proteins/metabolism , Humans , Kinetics , Microscopy, Confocal , Models, Biological , Mutation , Norepinephrine/metabolism , Peptides/chemistry , Phosphorylation , Point Mutation , Protein Binding , Protein Isoforms , Protein Structure, Tertiary , Protein Transport , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Staurosporine/pharmacology , Subcellular Fractions , Tetradecanoylphorbol Acetate/chemistry , Thrombin/metabolism , Time Factors , Transcriptional Activation
13.
Biochim Biophys Acta ; 1636(2-3): 169-74, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15164764

ABSTRACT

Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid (PA). Among the nine mammalian isotypes identified, DGKtheta is the only one with three cysteine-rich domains (CRDs) (instead of two) in its N-terminal regulatory region. We previously reported that DGKtheta binds to and is negatively regulated by active RhoA. We now report that RhoA strongly binds to the C-terminal catalytic domain, which would explain its inhibition of DGK activity. To help finding a physiological function of DGKtheta, we further determined its activity in vitro as a function of 15 different truncations and point mutations in the primary structure. Most of these alterations, located throughout the protein, inactivated the enzyme, suggesting that catalytic activity depends on all of its conserved domains. The most C-terminal CRD is elongated with a stretch of 15 amino acids that is highly conserved among DGK isotypes. Mutation analysis revealed a number of residues in this region that were essential for enzyme activity. We suggest that this CRD extension plays an essential role in the correct folding of the protein and/or in substrate presentation to the catalytic region of the protein.


Subject(s)
Diacylglycerol Kinase/metabolism , Amino Acid Sequence , Base Sequence , Catalytic Domain , DNA Primers , Diacylglycerol Kinase/chemistry , Diacylglycerol Kinase/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Structure-Activity Relationship , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...