Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Article in English | MEDLINE | ID: mdl-39001735

ABSTRACT

Coronary artery disease continues to be the leading cause of death globally. Identifying patients who are at risk of coronary artery disease remains a public health priority. At present, the focus of cardiovascular disease prevention relies heavily on probabilistic risk scoring despite no randomized controlled trials demonstrating their efficacy. The concept of using imaging to guide preventative therapy is not new, but has previously focused on indirect measures such as carotid intima-media thickening or coronary artery calcification. In recent trials, patients found to have coronary artery disease on computed tomography (CT) coronary angiography were more likely to be started on preventative therapy and had lower rates of cardiac events. This led to the design of the SCOT-HEART 2 (Scottish Computed Tomography of the Heart 2) trial, which aims to determine whether screening with the use of CT coronary angiography is more clinically effective than cardiovascular risk scoring to guide the use of primary preventative therapies and reduce the risk of myocardial infarction.

3.
Eur J Endocrinol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38917410

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesized that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS: We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS: UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity and adverse cardiometabolic risk factors such as fasting glucose, insulin and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22y) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION: 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.

4.
J Am Coll Cardiol ; 83(22): 2135-2144, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38811091

ABSTRACT

BACKGROUND: Total coronary atherosclerotic plaque activity across the entire coronary arterial tree is associated with patient-level clinical outcomes. OBJECTIVES: We aimed to investigate whether vessel-level coronary atherosclerotic plaque activity is associated with vessel-level myocardial infarction. METHODS: In this secondary analysis of an international multicenter study of patients with recent myocardial infarction and multivessel coronary artery disease, we assessed vessel-level coronary atherosclerotic plaque activity using coronary 18F-sodium fluoride positron emission tomography to identify vessel-level myocardial infarction. RESULTS: Increased 18F-sodium fluoride uptake was found in 679 of 2,094 coronary arteries and 414 of 691 patients. Myocardial infarction occurred in 24 (4%) vessels with increased coronary atherosclerotic plaque activity and in 25 (2%) vessels without increased coronary atherosclerotic plaque activity (HR: 2.08; 95% CI: 1.16-3.72; P = 0.013). This association was not demonstrable in those treated with coronary revascularization (HR: 1.02; 95% CI: 0.47-2.25) but was notable in untreated vessels (HR: 3.86; 95% CI: 1.63-9.10; Pinteraction = 0.024). Increased coronary atherosclerotic plaque activity in multiple coronary arteries was associated with heightened patient-level risk of cardiac death or myocardial infarction (HR: 2.43; 95% CI: 1.37-4.30; P = 0.002) as well as first (HR: 2.19; 95% CI: 1.18-4.06; P = 0.013) and total (HR: 2.50; 95% CI: 1.42-4.39; P = 0.002) myocardial infarctions. CONCLUSIONS: In patients with recent myocardial infarction and multivessel coronary artery disease, coronary atherosclerotic plaque activity prognosticates individual coronary arteries and patients at risk for myocardial infarction.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/complications , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Male , Female , Middle Aged , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnostic imaging , Aged , Positron-Emission Tomography , Coronary Vessels/diagnostic imaging , Risk Factors
5.
Eur J Nucl Med Mol Imaging ; 51(8): 2260-2270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456972

ABSTRACT

INTRODUCTION: Non-invasive detection of pathological changes in thoracic aortic disease remains an unmet clinical need particularly for patients with congenital heart disease. Positron emission tomography combined with magnetic resonance imaging (PET-MRI) could provide a valuable low-radiation method of aortic surveillance in high-risk groups. Quantification of aortic microcalcification activity using sodium [18F]fluoride holds promise in the assessment of thoracic aortopathies. We sought to evaluate aortic sodium [18F]fluoride uptake in PET-MRI using three methods of attenuation correction compared to positron emission tomography computed tomography (PET-CT) in patients with bicuspid aortic valve, METHODS: Thirty asymptomatic patients under surveillance for bicuspid aortic valve disease underwent sodium [18F]fluoride PET-CT and PET-MRI of the ascending thoracic aorta during a single visit. PET-MRI data were reconstructed using three iterations of attenuation correction (Dixon, radial gradient recalled echo with two [RadialVIBE-2] or four [RadialVIBE-4] tissue segmentation). Images were qualitatively and quantitatively analysed for aortic sodium [18F]fluoride uptake on PET-CT and PET-MRI. RESULTS: Aortic sodium [18F]fluoride uptake on PET-MRI was visually comparable with PET-CT using each reconstruction and total aortic standardised uptake values on PET-CT strongly correlated with each PET-MRI attenuation correction method (Dixon R = 0.70; RadialVIBE-2 R = 0.63; RadialVIBE-4 R = 0.64; p < 0.001 for all). Breathing related artefact between soft tissue and lung were detected using Dixon and RadialVIBE-4 but not RadialVIBE-2 reconstructions, with the presence of this artefact adjacent to the atria leading to variations in blood pool activity estimates. Consequently, quantitative agreements between radiotracer activity on PET-CT and PET-MRI were most consistent with RadialVIBE-2. CONCLUSION: Ascending aortic microcalcification analysis in PET-MRI is feasible with comparable findings to PET-CT. RadialVIBE-2 tissue attenuation correction correlates best with the reference standard of PET-CT and is less susceptible to artefact. There remain challenges in segmenting tissue types in PET-MRI reconstructions, and improved attenuation correction methods are required.


Subject(s)
Aorta, Thoracic , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Multimodal Imaging/methods , Aorta, Thoracic/diagnostic imaging , Adult , Calcinosis/diagnostic imaging , Positron-Emission Tomography/methods , Aged , Aortic Valve/diagnostic imaging , Image Processing, Computer-Assisted/methods , Positron Emission Tomography Computed Tomography/methods
7.
Stud Health Technol Inform ; 309: 240-241, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37869850

ABSTRACT

BACKGROUND: Artificial Intelligence (AI) based clinical decision support systems to aid diagnosis are increasingly being developed and implemented but with limited understanding of how such systems integrate with existing clinical work and organizational practices. We explored the early experiences of stakeholders using an AI-based e-learning imaging software tool Veye Lung Nodules (VLN) aiding the detection, classification, and measurement of pulmonary nodules in computed tomography scans of the chest. We performed semi-structured interviews and observations across early adopter deployment sites with clinicians, strategic decision-makers, suppliers, patients with long-term chest conditions, and academics with expertise in the use of diagnostic AI in radiology settings. We coded the data using the Technology, People, Organizations and Macro-environmental factors framework (TPOM). We conducted 39 interviews. Clinicians reported VLN to be easy to use with little disruption to the workflow. There were differences in patterns of use between experts and novice users with experts critically evaluating system recommendations and actively compensating for system limitations to achieve more reliable performance. Patients also viewed the tool positively. There were contextual variations in tool performance and use between different hospital sites and different use cases. Implementation challenges included integration with existing information systems, data protection, and perceived issues surrounding wider and sustained adoption, including procurement costs. Tool performance was variable, affected by integration into workflows and divisions of labor and knowledge, as well as technical configuration and infrastructure. These under-researched factors require attention and further research.


Subject(s)
Artificial Intelligence , Radiology , Humans , Radiography , Software , Tomography, X-Ray Computed
8.
J Am Med Inform Assoc ; 31(1): 24-34, 2023 12 22.
Article in English | MEDLINE | ID: mdl-37748456

ABSTRACT

OBJECTIVES: Artificial intelligence (AI)-based clinical decision support systems to aid diagnosis are increasingly being developed and implemented but with limited understanding of how such systems integrate with existing clinical work and organizational practices. We explored the early experiences of stakeholders using an AI-based imaging software tool Veye Lung Nodules (VLN) aiding the detection, classification, and measurement of pulmonary nodules in computed tomography scans of the chest. MATERIALS AND METHODS: We performed semistructured interviews and observations across early adopter deployment sites with clinicians, strategic decision-makers, suppliers, patients with long-term chest conditions, and academics with expertise in the use of diagnostic AI in radiology settings. We coded the data using the Technology, People, Organizations, and Macroenvironmental factors framework. RESULTS: We conducted 39 interviews. Clinicians reported VLN to be easy to use with little disruption to the workflow. There were differences in patterns of use between experts and novice users with experts critically evaluating system recommendations and actively compensating for system limitations to achieve more reliable performance. Patients also viewed the tool positively. There were contextual variations in tool performance and use between different hospital sites and different use cases. Implementation challenges included integration with existing information systems, data protection, and perceived issues surrounding wider and sustained adoption, including procurement costs. DISCUSSION: Tool performance was variable, affected by integration into workflows and divisions of labor and knowledge, as well as technical configuration and infrastructure. CONCLUSION: The socio-organizational factors affecting performance of diagnostic AI are under-researched and require attention and further research.


Subject(s)
Artificial Intelligence , Radiology , Humans , Radiography , Software , Tomography, X-Ray Computed
9.
Nat Metab ; 5(8): 1319-1336, 2023 08.
Article in English | MEDLINE | ID: mdl-37537371

ABSTRACT

Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.


Subject(s)
Adipose Tissue, Brown , Metabolic Diseases , Humans , Mice , Animals , Adipose Tissue, Brown/metabolism , Serotonin/metabolism , Sertraline/metabolism , Sertraline/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/pharmacology , Obesity/metabolism , Thermogenesis/physiology , Metabolic Diseases/metabolism
10.
J Nucl Med ; 64(9): 1478-1486, 2023 09.
Article in English | MEDLINE | ID: mdl-37591540

ABSTRACT

Coronary 18F-sodium fluoride (18F-fluoride) uptake is a marker of both atherosclerotic disease activity and disease progression. It is currently unknown whether there are rapid temporal changes in coronary 18F-fluoride uptake and whether these are more marked in those with clinically unstable coronary artery disease. This study aimed to determine the natural history of coronary 18F-fluoride uptake over 12 mo in patients with either advanced chronic coronary artery disease or a recent myocardial infarction. Methods: Patients with established multivessel coronary artery disease and either chronic disease or a recent acute myocardial infarction underwent coronary 18F-fluoride PET and CT angiography, which was repeated at 3, 6, or 12 mo. Coronary 18F-fluoride uptake was assessed in each vessel by measuring the coronary microcalcification activity (CMA). Coronary calcification was quantified by measuring calcium score, mass, and volume. Results: Fifty-nine patients had chronic coronary artery disease (median age, 68 y; 93% male), and 52 patients had a recent myocardial infarction (median age, 65 y; 83% male). Reflecting the greater burden of coronary artery disease, baseline CMA values were higher in those with chronic coronary artery disease. Coronary 18F-fluoride uptake (CMA > 0) was associated with higher baseline calcium scores (294 Agatston units [AU] [interquartile range, 116-483 AU] vs. 72 AU [interquartile range, 8-222 AU]; P < 0.001) and more rapid progression of coronary calcification scores (39 AU [interquartile range, 10-82 AU] vs. 12 AU [interquartile range, 1-36 AU]; P < 0.001) than was the absence of uptake (CMA = 0). Coronary 18F-fluoride uptake did not markedly alter over the course of 3, 6, or 12 mo in patients with either chronic coronary artery disease or a recent myocardial infarction. Conclusion: Coronary 18F-fluoride uptake is associated with the severity and progression of coronary artery disease but does not undergo a rapid dynamic change in patients with chronic or unstable coronary artery disease. This finding suggests that coronary 18F-fluoride uptake is a temporally stable marker of established and progressive disease.


Subject(s)
Calcinosis , Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Humans , Male , Aged , Female , Coronary Artery Disease/diagnostic imaging , Fluorides , Calcium , Heart , Myocardial Infarction/diagnostic imaging
11.
Radiology ; 308(2): e221963, 2023 08.
Article in English | MEDLINE | ID: mdl-37526539

ABSTRACT

Background In the Scottish Computed Tomography of the Heart (SCOT-HEART) trial in individuals with stable chest pain, a treatment strategy based on coronary CT angiography (CTA) led to improved outcomes. Purpose To assess 5-year cumulative radiation doses of participants undergoing investigation for suspected angina due to coronary artery disease with or without coronary CTA. Materials and Methods This secondary analysis of the SCOT-HEART trial included data from six of 12 recruiting sites and two of three imaging sites. Participants were recruited between November 18, 2010, and September 24, 2014, with follow-up through January 31, 2018. Study participants had been randomized (at a one-to-one ratio) to standard care with CT (n = 1466) or standard care alone (n = 1428). Imaging was performed on a 64-detector (n = 223) or 320-detector row scanner (n = 1466). Radiation dose from CT (dose-length product), SPECT (injected activity), and invasive coronary angiography (ICA; kerma-area product) was assessed for 5 years after enrollment. Effective dose was calculated using conversion factors appropriate for the imaging modality and body region imaged (using 0.026 mSv/mGy · cm for cardiac CT). Results Cumulative radiation dose was assessed in 2894 participants. Median effective dose was 3.0 mSv (IQR, 2.6-3.3 mSv) for coronary calcium scoring, 4.1 mSv (IQR, 2.6-6.1 mSv) for coronary CTA, 7.4 mSv (IQR, 6.2-8.5 mSv) for SPECT, and 4.1 mSv (IQR, 2.5-6.8 mSv) for ICA. After 5 years, total per-participant cumulative dose was higher in the CT group (median, 8.1 mSv; IQR, 5.5-12.4 mSv) compared with standard-care group (median, 0 mSv; IQR, 0-4.5 mSv; P < .001). In participants who underwent any imaging, cumulative radiation exposure was higher in the CT group (n = 1345; median, 8.6 mSv; IQR, 6.1-13.3 mSv) compared with standard-care group (n = 549; median, 6.4 mSv; IQR, 3.4-9.2 mSv; P < .001). Conclusion In the SCOT-HEART trial, the 5-year cumulative radiation dose from cardiac imaging was higher in the coronary CT angiography group compared with the standard-care group, largely because of the radiation exposure from CT. Clinical trial registration no. NCT01149590 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Dodd and Bosserdt in this issue.


Subject(s)
Coronary Artery Disease , Radiation Exposure , Humans , Chest Pain/diagnostic imaging , Chest Pain/etiology , Computed Tomography Angiography , Coronary Angiography/methods , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed
12.
Arterioscler Thromb Vasc Biol ; 43(9): 1729-1736, 2023 09.
Article in English | MEDLINE | ID: mdl-37439259

ABSTRACT

BACKGROUND: 18F-GP1 is a novel positron-emitting radiotracer that is highly specific for activated platelets and thrombus. In a proof-of-concept study, we aimed to determine its potential clinical application in establishing the role and origin of thrombus in ischemic stroke. METHODS: Eleven patients with recent ischemic stroke (n=9) or transient ischemic attack (n=2) underwent 18F-GP1 positron emission tomography and computed tomography angiography at a median of 11 (range, 2-21) days from symptom onset. 18F-GP1 uptake (maximum target-to-background ratio) was assessed in the carotid arteries and brain. RESULTS: 18F-GP1 uptake was identified in 10 of 11 patients: 4 in the carotid arteries only, 3 in the brain only, and 3 in both the brain and carotid arteries. In those with carotid uptake, 4 participants had >50% stenosis and 3 had nonstenotic disease. One case had bilateral stenotic disease (>70%), but only the culprit carotid artery demonstrated 18F-GP1 uptake. The average uptake was higher in the culprit (median maximum target-to-background ratio, 1.55 [interquartile range, 1.26-1.82]) compared with the contralateral nonculprit carotid artery (maximum target-to-background ratio, 1.22 [1.19-1.6]). In those with brain 18F-GP1 uptake (maximum target-to-background ratio, 6.45 [4.89-7.65]), areas of acute infarction on computed tomography correlated with brain 18F-GP1 uptake in 6 cases. Ex vivo autoradiography of postmortem infarcted brain tissue showed focal uptake corresponding to intraluminal thrombus within the culprit vessel and downstream microvasculature. There was also evidence of diffuse uptake within some of the infarcted brain tissue reflecting parenchymal petechial hemorrhage. CONCLUSIONS: 18F-GP1 positron emission tomography and computed tomography angiography is a novel noninvasive method of identifying in vivo cerebrovascular thrombosis, which holds major promise in understanding the role and origin of thrombosis in stroke. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03943966.


Subject(s)
Carotid Stenosis , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Thrombosis , Humans , Carotid Arteries , Ischemic Attack, Transient/diagnostic imaging , Stroke/diagnostic imaging
13.
JAMA Cardiol ; 8(8): 755-764, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37379010

ABSTRACT

Importance: Recurrent coronary events in patients with recent myocardial infarction remain a major clinical problem. Noninvasive measures of coronary atherosclerotic disease activity have the potential to identify individuals at greatest risk. Objective: To assess whether coronary atherosclerotic plaque activity as assessed by noninvasive imaging is associated with recurrent coronary events in patients with myocardial infarction. Design, Setting, and Participants: This prospective, longitudinal, international multicenter cohort study recruited participants aged 50 years or older with multivessel coronary artery disease and recent (within 21 days) myocardial infarction between September 2015 and February 2020, with a minimum 2 years' follow-up. Intervention: Coronary 18F-sodium fluoride positron emission tomography and coronary computed tomography angiography. Main Outcomes and Measures: Total coronary atherosclerotic plaque activity was assessed by 18F-sodium fluoride uptake. The primary end point was cardiac death or nonfatal myocardial infarction but was expanded during study conduct to include unscheduled coronary revascularization due to lower than anticipated primary event rates. Results: Among 2684 patients screened, 995 were eligible, 712 attended for imaging, and 704 completed an interpretable scan and comprised the study population. The mean (SD) age of participants was 63.8 (8.2) years, and most were male (601 [85%]). Total coronary atherosclerotic plaque activity was identified in 421 participants (60%). After a median follow-up of 4 years (IQR, 3-5 years), 141 participants (20%) experienced the primary end point: 9 had cardiac death, 49 had nonfatal myocardial infarction, and 83 had unscheduled coronary revascularizations. Increased coronary plaque activity was not associated with the primary end point (hazard ratio [HR], 1.25; 95% CI, 0.89-1.76; P = .20) or unscheduled revascularization (HR, 0.98; 95% CI, 0.64-1.49; P = .91) but was associated with the secondary end point of cardiac death or nonfatal myocardial infarction (47 of 421 patients with high plaque activity [11.2%] vs 19 of 283 with low plaque activity [6.7%]; HR, 1.82; 95% CI, 1.07-3.10; P = .03) and all-cause mortality (30 of 421 patients with high plaque activity [7.1%] vs 9 of 283 with low plaque activity [3.2%]; HR, 2.43; 95% CI, 1.15-5.12; P = .02). After adjustment for differences in baseline clinical characteristics, coronary angiography findings, and Global Registry of Acute Coronary Events score, high coronary plaque activity was associated with cardiac death or nonfatal myocardial infarction (HR, 1.76; 95% CI, 1.00-3.10; P = .05) but not with all-cause mortality (HR, 2.01; 95% CI, 0.90-4.49; P = .09). Conclusions and Relevance: In this cohort study of patients with recent myocardial infarction, coronary atherosclerotic plaque activity was not associated with the primary composite end point. The findings suggest that risk of cardiovascular death or myocardial infarction in patients with elevated plaque activity warrants further research to explore its incremental prognostic implications.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Male , Female , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies , Cohort Studies , Sodium Fluoride , Coronary Artery Disease/complications , Myocardial Infarction/complications , Death
14.
Arterioscler Thromb Vasc Biol ; 43(7): e279-e290, 2023 07.
Article in English | MEDLINE | ID: mdl-37165878

ABSTRACT

BACKGROUND: Assessments of coronary disease activity with 18F-sodium fluoride positron emission tomography and radiomics-based precision coronary plaque phenotyping derived from coronary computed tomography angiography may enhance risk stratification in patients with coronary artery disease. We sought to investigate whether the prognostic information provided by these 2 approaches is complementary in the prediction of myocardial infarction. METHODS: Patients with known coronary artery disease underwent coronary 18F-sodium fluoride positron emission tomography and coronary computed tomography angiography on a hybrid positron emission tomography/computed tomography scanner. Coronary 18F-NaF uptake was determined by the coronary microcalcification activity. We performed quantitative plaque analysis of coronary computed tomography angiography datasets and extracted 1103 radiomic features for each plaque. Using weighted correlation network analysis, we derived latent morphological features of coronary lesions which were aggregated to patient-level radiomics nomograms to predict myocardial infarction. RESULTS: Among 260 patients with established coronary artery disease (age, 65±9 years; 83% men), 179 (69%) participants showed increased coronary 18F-NaF activity (coronary microcalcification activity>0). Over 53 (40-59) months of follow-up, 18 patients had a myocardial infarction. Using weighted correlation network analysis, we derived 15 distinct eigen radiomic features representing latent morphological coronary plaque patterns in an unsupervised fashion. Following adjustments for calcified, noncalcified, and low-density noncalcified plaque volumes and 18F-NaF coronary microcalcification activity, 4 radiomic features remained independent predictors of myocardial infarction (hazard ratio, 1.46 [95% CI, 1.03-2.08]; P=0.03; hazard ratio, 1.62 [95% CI, 1.04-2.54]; P=0.02; hazard ratio, 1.49 [95% CI, 1.07-2.06]; P=0.01; and hazard ratio, 1.50 (95% CI, 1.05-2.13); P=0.02). CONCLUSIONS: In patients with established coronary artery disease, latent coronary plaque morphological features, quantitative plaque volumes, and disease activity on 18F-sodium fluoride positron emission tomography are additive predictors of myocardial infarction.


Subject(s)
Calcinosis , Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Male , Humans , Middle Aged , Aged , Female , Coronary Artery Disease/diagnostic imaging , Computed Tomography Angiography , Sodium Fluoride , Fluorine Radioisotopes , Radiopharmaceuticals , Positron-Emission Tomography/methods , Positron Emission Tomography Computed Tomography/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Coronary Angiography/methods
15.
Heart ; 109(22): 1677-1682, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37164479

ABSTRACT

OBJECTIVE: In patients with abdominal aortic aneurysms, sodium [18F]fluoride positron emission tomography identifies aortic microcalcification and disease activity. Increased uptake is associated with aneurysm expansion and adverse clinical events. The effect of endovascular aneurysm repair (EVAR) on aortic disease activity and sodium [18F]fluoride uptake is unknown. This study aimed to compare aortic sodium [18F]fluoride uptake before and after treatment with EVAR. METHODS: In a preliminary proof-of-concept cohort study, preoperative and post-operative sodium [18F]fluoride positron emission tomography-computed tomography angiography was performed in patients with an infrarenal abdominal aortic aneurysm undergoing EVAR according to current guideline-directed size treatment thresholds. Regional aortic sodium [18F]fluoride uptake was assessed using aortic microcalcification activity (AMA): a summary measure of mean aortic sodium [18F]fluoride uptake. RESULTS: Ten participants were recruited (76±6 years) with a mean aortic diameter of 57±2 mm at time of EVAR. Mean time from EVAR to repeat scan was 62±21 months. Prior to EVAR, there was higher abdominal aortic AMA when compared with the thoracic aorta (AMA 1.88 vs 1.2; p<0.001). Following EVAR, sodium [18F]fluoride uptake was markedly reduced in the suprarenal (ΔAMA 0.62, p=0.03), neck (ΔAMA 0.72, p=0.02) and body of the aneurysm (ΔAMA 0.69, p=0.02) while it remained unchanged in the thoracic aorta (ΔAMA 0.11, p=0.41). CONCLUSIONS: EVAR is associated with a reduction in AMA within the stented aortic segment. This suggests that EVAR can modify aortic disease activity and aortic sodium [18F]fluoride uptake is a promising non-invasive surrogate measure of aneurysm disease activity.


Subject(s)
Aortic Aneurysm, Abdominal , Blood Vessel Prosthesis Implantation , Calcinosis , Endovascular Procedures , Humans , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Abdominal/etiology , Fluorides , Endovascular Aneurysm Repair , Cohort Studies , Blood Vessel Prosthesis Implantation/methods , Treatment Outcome , Endovascular Procedures/adverse effects , Calcinosis/surgery , Retrospective Studies , Risk Factors , Blood Vessel Prosthesis
16.
Chest ; 164(2): 339-354, 2023 08.
Article in English | MEDLINE | ID: mdl-36907375

ABSTRACT

The diagnosis, prognostication, and differentiation of phenotypes of COPD can be facilitated by CT scan imaging of the chest. CT scan imaging of the chest is a prerequisite for lung volume reduction surgery and lung transplantation. Quantitative analysis can be used to evaluate extent of disease progression. Evolving imaging techniques include micro-CT scan, ultra-high-resolution and photon-counting CT scan imaging, and MRI. Potential advantages of these newer techniques include improved resolution, prediction of reversibility, and obviation of radiation exposure. This article discusses important emerging techniques in imaging patients with COPD. The clinical usefulness of these emerging techniques as they stand today are tabulated for the benefit of the practicing pulmonologist.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed , Pneumonectomy , Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging
18.
Heart ; 109(9): 702-709, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36631142

ABSTRACT

OBJECTIVE: In patients with acute chest pain who have had myocardial infarction excluded, plasma cardiac troponin I concentrations ≥5 ng/L are associated with risk of future adverse cardiovascular events. We aim to evaluate the association between cardiac troponin and coronary plaque composition in such patients. METHODS: In a prespecified secondary analysis of a prospective cohort study, blinded quantitative plaque analysis was performed on 242 CT coronary angiograms of patients with acute chest pain in whom myocardial infarction was excluded. Patients were stratified by peak plasma cardiac troponin I concentration ≥5 ng/L or <5 ng/L. Associations were assessed using univariable and multivariable logistic regression analyses. RESULTS: The cohort was predominantly middle-aged (62±12 years) men (69%). Patients with plasma cardiac troponin I concentration ≥5 ng/L (n=161) had a higher total (median 33% (IQR 0-47) vs 0% (IQR 0-33)), non-calcified (27% (IQR 0-37) vs 0% (IQR 0-28)), calcified (2% (IQR 0-8) vs 0% (IQR 0-3)) and low-attenuation (1% (IQR 0-3) vs 0% (IQR 0-1)) coronary plaque burden compared with those with concentrations <5 ng/L (n=81; p≤0.001 for all). Low-attenuation plaque burden was independently associated with plasma cardiac troponin I concentration ≥5 ng/L after adjustment for clinical characteristics (adjusted OR per doubling 1.62 (95% CI 1.17 to 2.32), p=0.005) or presence of any visible coronary artery disease (adjusted OR per doubling 1.57 (95% CI 1.07 to 2.37), p=0.026). CONCLUSION: In patients with acute chest pain but without myocardial infarction, plasma cardiac troponin I concentrations ≥5 ng/L are associated with greater burden of low-attenuation coronary plaque.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Male , Middle Aged , Humans , Prospective Studies , Troponin I , Coronary Artery Disease/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Coronary Angiography , Myocardial Infarction/diagnosis , Chest Pain , Biomarkers
19.
Eur Heart J Cardiovasc Imaging ; 24(6): 759-767, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36662130

ABSTRACT

AIMS: Bioprosthetic aortic valve degeneration demonstrates pathological similarities to aortic stenosis. Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for incident aortic stenosis and disease progression. The aim of this study is to investigate whether serum Lp(a) concentrations are associated with bioprosthetic aortic valve degeneration. METHODS AND RESULTS: In a post hoc analysis of a prospective multimodality imaging study (NCT02304276), serum Lp(a) concentrations, echocardiography, contrast-enhanced computed tomography (CT) angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) were assessed in patients with bioprosthetic aortic valves. Patients were also followed up for 2 years with serial echocardiography. Serum Lp(a) concentrations [median 19.9 (8.4-76.4) mg/dL] were available in 97 participants (mean age 75 ± 7 years, 54% men). There were no baseline differences across the tertiles of serum Lp(a) concentrations for disease severity assessed by echocardiography [median peak aortic valve velocity: highest tertile 2.5 (2.3-2.9) m/s vs. lower tertiles 2.7 (2.4-3.0) m/s, P = 0.204], or valve degeneration on CT angiography (highest tertile n = 8 vs. lower tertiles n = 12, P = 0.552) and 18F-NaF PET (median tissue-to-background ratio: highest tertile 1.13 (1.05-1.41) vs. lower tertiles 1.17 (1.06-1.53), P = 0.889]. After 2 years of follow-up, there were no differences in annualized change in bioprosthetic hemodynamic progression [change in peak aortic valve velocity: highest tertile [0.0 (-0.1-0.2) m/s/year vs. lower tertiles 0.1 (0.0-0.2) m/s/year, P = 0.528] or the development of structural valve degeneration. CONCLUSION: Serum lipoprotein(a) concentrations do not appear to be a major determinant or mediator of bioprosthetic aortic valve degeneration.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Heart Valve Prosthesis , Male , Humans , Aged , Aged, 80 and over , Female , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve/pathology , Prospective Studies , Lipoprotein(a) , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Echocardiography/adverse effects , Heart Valve Prosthesis/adverse effects , Bioprosthesis/adverse effects
20.
JACC Cardiovasc Imaging ; 16(6): 820-832, 2023 06.
Article in English | MEDLINE | ID: mdl-36526577

ABSTRACT

BACKGROUND: The diagnosis and management of myocardial infarction are increasingly complex, and establishing the presence of intracoronary thrombosis has major implications for both the classification and treatment of myocardial infarction. OBJECTIVES: The aim of this study was to investigate whether positron emission tomographic (PET) and computed tomographic (CT) imaging could noninvasively detect in vivo thrombus formation in human coronary arteries using a novel glycoprotein IIb/IIIa receptor antagonist-based radiotracer, 18F-GP1. METHODS: In a single-center observational case-control study, patients with or without acute myocardial infarction underwent coronary 18F-GP1 PET/CT angiography. Coronary artery 18F-GP1 uptake was assessed visually and quantified using maximum target-to-background ratios. RESULTS: 18F-GP1 PET/CT angiography was performed in 49 patients with and 50 patients without acute myocardial infarction (mean age: 61 ± 9 years, 75% men). Coronary 18F-GP1 uptake was apparent in 39 of the 49 culprit lesions (80%) in patients with acute myocardial infarction. False negative results appeared to relate to time delays to scan performance and low thrombus burden in small-caliber distal arteries. On multivariable regression analysis, culprit vessel status was the only independent variable associated with higher 18F-GP1 uptake. Extracoronary cardiac 18F-GP1 findings included a high frequency of infarct-related intramyocardial uptake (35%) as well as left ventricular (8%) or left atrial (2%) thrombus. CONCLUSIONS: Coronary 18F-GP1 PET/CT angiography is the first noninvasive selective technique to identify in vivo coronary thrombosis in patients with acute myocardial infarction. This novel approach can further define the role and location of thrombosis within the heart and has the potential to inform the diagnosis, management, and treatment of patients with acute myocardial infarction. (In-Vivo Thrombus Imaging With 18F-GP1, a Novel Platelet PET Radiotracer [iThrombus]; NCT03943966).


Subject(s)
Coronary Thrombosis , Myocardial Infarction , Male , Humans , Middle Aged , Aged , Female , Coronary Vessels/pathology , Positron Emission Tomography Computed Tomography , Case-Control Studies , Predictive Value of Tests , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Coronary Thrombosis/diagnostic imaging , Coronary Thrombosis/therapy , Platelet Aggregation Inhibitors , Coronary Angiography
SELECTION OF CITATIONS
SEARCH DETAIL
...