Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 14(2): 109-16, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15679580

ABSTRACT

The immune system is called into action by alarm signals generated from injured tissues. We examined the nature of these alarm signals after exposure of skin residential cells to contact allergens (nickel sulfate and potassium dichromate) and a contact irritant [sodium dodecyl sulfate (SDS)]. Nickel sulfate, potassium dichromate, and SDS were applied topically to the stratum corneum of human skin equivalents. A similar concentration-dependent increase in chemokine (CCL20, CCL27, and CXCL8) secretion was observed for all three chemicals. Exposure to nickel sulfate and SDS was investigated in more detail: similar to chemokine secretion, no difference was observed in the time- and concentration-dependent increase in pro-inflammatory cytokine [interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha)] secretion. Maximal increase in IL-1alpha secretion occurred within 2 h after exposure to both nickel sulfate and SDS and prior to increased chemokine secretion. TNF-alpha secretion was detectable 8 h after chemical exposure. After allergen or irritant exposure, increased CCL20 and CXCL8, but not CCL27, secretion was inhibited by neutralizing human antibodies to either IL-1alpha or TNF-alpha. Our data show that alarm signals consist of primary and secondary signals. IL-1alpha and TNF-alpha are released as primary alarm signals, which trigger the release of secondary chemokine (CCL20 and CXCL8) alarm signals. However, some chemokines, for example, CCL27 can be secreted in an IL-1alpha and TNF-alpha independent manner. Our data suggest that skin residential cells respond to both allergen and irritant exposure by releasing mediators that initiate infiltration of immune responsive cells into the skin.


Subject(s)
Chemokines, CC/biosynthesis , Interleukin-1/biosynthesis , Interleukin-8/biosynthesis , Macrophage Inflammatory Proteins/biosynthesis , Skin/drug effects , Tumor Necrosis Factor-alpha/biosynthesis , Allergens/metabolism , Caustics/pharmacology , Cells, Cultured , Chemokine CCL20 , Chemokine CCL27 , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Fibroblasts/metabolism , Humans , Interleukin-1/metabolism , Irritants/pharmacology , Keratinocytes/cytology , Nickel/pharmacology , Potassium Dichromate/pharmacology , Recombinant Proteins/chemistry , Skin/metabolism , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Time Factors
2.
J Pathol ; 194(4): 398-405, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11523046

ABSTRACT

Recruitment of activated T-cells to the skin is a common feature in a wide variety of inflammatory skin diseases. As CXCR3 activating chemokines CXCL10 (IP-10), CXCL9 (Mig), and CXCL11 (IP-9/I-TAC) specifically attract activated T-cells, this study addressed the question of whether differences in the expression of these chemokines correlate with the site and cellular composition of the skin infiltrates in different types of inflammatory skin disease. Skin biopsies from lichen planus, chronic discoid lupus erythematosus, allergic patch test reactions, psoriasis, and Jessner's lymphocytic infiltration of the skin were investigated for chemokine expression using RNA in situ hybridization, and for the expression of CXCR3 using immunohistochemistry. The results showed differential expression of CXCL10, CXCL9, and CXCL11, which correlated with differences in the localization and cellular composition of the infiltrates. Whereas CXCL10 and CXCL11 were mainly expressed by basal keratinoctyes, CXCL9 mRNA expression was located predominantly in the dermal infiltrates. Correlation with immunohistochemical data suggested that macrophages and activated keratinocytes were the main producers of these chemokines. CXCR3 was expressed by a majority of both CD4+ and CD8+ infiltrating T-cells, suggesting a functional interaction between locally produced chemokines and CXCR3-expressing T-cells. In conclusion, these findings indicate that these CXCR3 activating chemokines play a significant role in the recruitment and maintenance of T-cell infiltrates in the inflammatory skin diseases studied.


Subject(s)
Chemokines, CXC/metabolism , Dermatitis/immunology , Receptors, Chemokine/metabolism , Chemokine CXCL10 , Chemokine CXCL11 , Chemokines, CXC/genetics , Gene Expression , HLA-DR Antigens/metabolism , Humans , Immunoenzyme Techniques , In Situ Hybridization , Intercellular Adhesion Molecule-1/metabolism , Lichen Planus/immunology , Lupus Erythematosus, Discoid/immunology , Psoriasis/immunology , RNA, Messenger/genetics , Receptors, CXCR3
3.
J Invest Dermatol ; 113(4): 574-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10504443

ABSTRACT

Differentiation between allergic and irritant contact dermatitis reactions is difficult, as both inflammatory diseases are clinically, histologically, and immunohistologically very similar. Previous studies in mice revealed that the chemokine IP-10 is exclusively expressed in allergic contact dermatitis reactions. In the present study, we investigated whether the mRNA expression of IP-10 and the related CXCR3 activating chemokines, Mig and IP-9 are also differentially expressed in human allergic contact dermatitis and irritant contact dermatitis reactions. Skin biopsies from allergic (13 cases) and sodium lauryl sulfate-induced irritant patch test reactions (13 cases), obtained 1-72 h after patch testing, were studied by means of an in situ hybridization technique. Results of chemokine mRNA expression were correlated with clinical scoring, histology, and immunohistochemical data including the proportion of inflammatory cells expressing CXCR3, the receptor for IP-10, Mig, and IP-9, and ICAM-1 and HLA-DR expression on keratinocytes. IP-10, Mig, and IP-9 mRNA were detected in seven of nine allergic contact dermatitis reactions after 24-72 h, but not in sodium lauryl sulfate-induced irritant contact dermatitis reactions. ICAM-1 expression by keratinocytes was only found in allergic contact dermatitis reactions and correlated with chemokine expression. Moreover, up to 50% of the infiltrating cells in allergic contact dermatitis expressed CXCR3, in contrast to only 20% in irritant contact dermatitis reactions. In conclusion, we have demonstrated differences in chemokine expression between allergic contact dermatitis and irritant contact dermatitis reactions, which might reflect different regulatory mechanisms operating in these diseases and may be an important clue for differentiation between allergic contact dermatitis and irritant contact dermatitis reactions.


Subject(s)
Chemokines, CXC/genetics , Dermatitis, Allergic Contact/immunology , Dermatitis, Irritant/immunology , Intercellular Signaling Peptides and Proteins , Patch Tests , RNA, Messenger/analysis , Chemokine CXCL10 , Chemokine CXCL11 , Chemokine CXCL9 , HLA-DR Antigens/analysis , Humans , Intercellular Adhesion Molecule-1/analysis , Interferon-gamma/pharmacology , Keratinocytes/chemistry , Receptors, CXCR3 , Receptors, Chemokine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...