Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 624(7992): 539-544, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030731

ABSTRACT

Entanglement is a distinguishing feature of quantum many-body systems, and uncovering the entanglement structure for large particle numbers in quantum simulation experiments is a fundamental challenge in quantum information science1. Here we perform experimental investigations of entanglement on the basis of the entanglement Hamiltonian (EH)2 as an effective description of the reduced density operator for large subsystems. We prepare ground and excited states of a one-dimensional XXZ Heisenberg chain on a 51-ion programmable quantum simulator3 and perform sample-efficient 'learning' of the EH for subsystems of up to 20 lattice sites4. Our experiments provide compelling evidence for a local structure of the EH. To our knowledge, this observation marks the first instance of confirming the fundamental predictions of quantum field theory by Bisognano and Wichmann5,6, adapted to lattice models that represent correlated quantum matter. The reduced state takes the form of a Gibbs ensemble, with a spatially varying temperature profile as a signature of entanglement2. Our results also show the transition from area- to volume-law scaling7 of von Neumann entanglement entropies from ground to excited states. As we venture towards achieving quantum advantage, we anticipate that our findings and methods have wide-ranging applicability to revealing and understanding entanglement in many-body problems with local interactions including higher spatial dimensions.

2.
Phys Rev Lett ; 128(11): 113602, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363010

ABSTRACT

Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.

3.
Phys Rev Lett ; 128(12): 120503, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35394305

ABSTRACT

A large ongoing research effort focuses on obtaining a quantum advantage in the solution of combinatorial optimization problems on near-term quantum devices. A particularly promising platform implementing quantum optimization algorithms are arrays of trapped neutral atoms, laser coupled to highly excited Rydberg states. However, encoding combinatorial optimization problems in atomic arrays is challenging due to limited interqubit connectivity of the native finite-range interactions. Here, we present a four-body Rydberg parity gate, enabling a direct and straightforward implementation of the parity architecture, a scalable architecture for encoding arbitrarily connected interaction graphs. Our gate relies on adiabatic laser pulses and is fully programmable by adjusting two hold times during operation. We numerically demonstrate implementations of the quantum approximate optimization algorithm (QAOA) for small-scale test problems. Variational optimization steps can be implemented with a constant number of system manipulations, paving the way for experimental investigations of QAOA beyond the reach of numerical simulations.

4.
Nature ; 603(7902): 604-609, 2022 03.
Article in English | MEDLINE | ID: mdl-35322252

ABSTRACT

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

5.
Phys Rev Lett ; 127(20): 200503, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860040

ABSTRACT

We show that combining randomized measurement protocols with importance sampling allows for characterizing entanglement in significantly larger quantum systems and in a more efficient way than in previous work. A drastic reduction of statistical errors is obtained using classical techniques of machine learning and tensor networks using partial information on the quantum state. In current experimental settings of engineered many-body quantum systems this significantly increases the (sub-)system sizes for which entanglement can be measured. In particular, we show an exponential reduction of the required number of measurements to estimate the purity of product states and GHZ states.

6.
Phys Rev Lett ; 127(17): 170501, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739272

ABSTRACT

Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.

7.
Phys Rev Lett ; 125(20): 200501, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258654

ABSTRACT

We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].

8.
Phys Rev Lett ; 124(1): 010504, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976701

ABSTRACT

We describe a protocol for cross-platform verification of quantum simulators and quantum computers. We show how to measure directly the overlap Tr[ρ_{1}ρ_{2}] and the purities Tr[ρ_{1,2}^{2}], and thus a fidelity of two, possibly mixed, quantum states ρ_{1} and ρ_{2} prepared in separate experimental platforms. We require only local measurements in randomized product bases, which are communicated classically. As a proof of principle, we present the measurement of experiment-theory fidelities for entangled 10-qubit quantum states in a trapped ion quantum simulator.

9.
Phys Rev Lett ; 123(26): 260505, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951449

ABSTRACT

Arrays of atoms trapped in optical tweezers combine features of programmable analog quantum simulators with atomic quantum sensors. Here we propose variational quantum algorithms, tailored for tweezer arrays as programmable quantum sensors, capable of generating entangled states on demand for precision metrology. The scheme is designed to generate metrological enhancement by optimizing it in a feedback loop on the quantum device itself, thus preparing the best entangled states given the available quantum resources. We apply our ideas to the generation of spin-squeezed states on Sr atom tweezer arrays, where finite-range interactions are generated through Rydberg dressing. The complexity of experimental variational optimization of our quantum circuits is expected to scale favorably with system size. We numerically show our approach to be robust to noise, and surpassing known protocols.

10.
Phys Rev Lett ; 112(16): 163001, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815645

ABSTRACT

We identify a relation between the dynamics of ultracold Rydberg gases in which atoms experience a strong dipole blockade and spontaneous emission, and a stochastic process that models certain wireless random-access networks. We then transfer insights and techniques initially developed for these wireless networks to the realm of Rydberg gases, and explain how the Rydberg gas can be driven into crystal formations using our understanding of wireless networks. Finally, we propose a method to determine Rabi frequencies (laser intensities) such that particles in the Rydberg gas are excited with specified target excitation probabilities, providing control over mixed-state populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...