Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotechnology ; 63(4): 371-84, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21509612

ABSTRACT

The efficient establishment of high protein producing recombinant mammalian cell lines is facilitated by the use of a stringent selection system. Here, we describe two methods to create a stringent selection system based on the Zeocin resistance marker. First, we cloned increasingly longer stretches of DNA, encoding a range of 8-131 amino acids immediately upstream of the Zeocin selection marker gene. The DNA stretches were separated from the open reading frame of the selection marker gene by a stopcodon. The idea behind this was that the translation machinery will first translate the small peptide, stop and then restart at the AUG of the Zeocin marker. This process, however, will become less efficient with increasingly longer stretches of DNA upstream of the Zeocin marker that has to be translated first. This would result in lower levels of the Zeocin selection marker protein and thus a higher selection stringency of the system. Secondly, we performed a genetic screen to identify PCR induced mutations in the Zeocin selection protein that functionally impair the selection marker protein. Both the insertion of increasingly longer peptides and several Zeocin selection protein mutants resulted in a decreasing number of stably transfected colonies that concomitantly displayed higher protein expression levels. When the Zeocin mutants were combined with very short small peptides (8-14 amino acids long), this created a flexible, high stringency selection system. The system allows the rapid establishment of few, but high protein producing mammalian cell lines.

2.
J Biotechnol ; 128(2): 237-45, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17092592

ABSTRACT

To obtain highly productive mammalian cell lines, often large numbers of clones need to be screened. This is largely due to low selection stringencies, creating many, but low protein producing clones. To remedy this problem, a novel, very stringent selection system was designed, to create few, but high protein producing clones. In essence, a selection marker with a startcodon that confers attenuated translation initiation frequency was placed upstream of the gene of interest with a startcodon that confers optimal translation initiation. From the transcribed bicistronic mRNA, the selection marker is translated at a low frequency, and the protein of interest at a high frequency. This selection system is so stringent that clones form only rarely. However, application of anti-repressor elements, which increase promoter activity, did induce the formation of clones that expressed proteins at high levels. When combined with anti-repressor elements, this novel selection system can be a valuable tool to rapidly create few, but highly productive mammalian cell lines.


Subject(s)
Cell Line , Cloning, Molecular/methods , Gene Dosage/genetics , Gene Expression Regulation/genetics , Transfection/methods , Animals , CHO Cells/metabolism , Cricetinae , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL
...