Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters










Publication year range
1.
ACS Catal ; 14(13): 10234-10244, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38988650

ABSTRACT

The epoxidation of ethylene stands as one of the most important industrial catalytic reactions, and silver-based catalysts show superior activity and selectivity. Oxygen is activated on the surface of silver during the reaction and exerts a substantial impact on product selectivity. Notably, the oxygen species residing in the topmost atomic layers profoundly influence the reactivity of a catalyst. However, their characterization under in situ reaction conditions remains a huge challenge, and specific structures have not been identified yet. In this study, we employ in situ X-ray photoelectron spectroscopy and density functional theory calculations to determine the oxygen species formed at the topmost atomic layers of a silver foil and to assign them a structure. Three different groups of oxygen species activated on silver are identified: (i) surface lattice oxygen and two oxygen species originating from associatively adsorbed dioxygen and (ii) top and (iii) subsurface oxygen. Transient in situ photoelectron spectroscopy experiments are carried out to reveal the dynamic evolution and thus reactivity of the different oxygen species under ethylene epoxidation reaction environments. The top oxygen atom from the adsorbed associated dioxygen is the most active. Meanwhile, a frequency-selective data analysis method, developed to process time-resolved data, provides insights into the evolving trends of peak intensities for different oxygen species. The versatility of this method suggests its potential application in future time-resolved characterization studies.

2.
Small ; : e2401184, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884188

ABSTRACT

An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.

3.
Chem Rev ; 124(8): 4543-4678, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38564235

ABSTRACT

The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.

4.
Chem Soc Rev ; 53(6): 3065-3095, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38369933

ABSTRACT

The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.

5.
Acc Chem Res ; 57(1): 23-36, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38099741

ABSTRACT

ConspectusMethane complete oxidation is an important reaction that is part of the general scheme used for removing pollutants contained in emissions from internal combustion engines and, more generally, combustion processes. It has also recently attracted interest as an option for the removal of atmospheric methane in the context of negative emission technologies. Methane, a powerful greenhouse gas, can be converted to carbon dioxide and water via its complete oxidation. Despite burning methane being facile because the combustion sustains its complete oxidation after ignition, methane strong C-H bonds require a catalyst to perform the oxidation at low temperatures and in the absence of a flame so as to avoid the formation of nitrogen oxides, such as those produced in flares. This process allows methane removal to be obtained under conditions that usually lead to higher emissions, such as under cold start conditions in the case of internal combustion engines. Among several options that include homo- and heterogeneous catalysts, supported palladium-based catalysts are the most active heterogeneous systems for this reaction. Finely divided palladium can activate C-H bonds at temperatures as low as 150 °C, although complete conversion is usually not reached until 400-500 °C in practical applications. Major goals are to achieve catalytic methane oxidation at as low as possible temperature and to utilize this expensive metal more efficiently.Compared to any other transition metal, palladium and its oxides are orders of magnitude more reactive for methane oxidation in the absence of water. During the last few decades, much research has been devoted to unveiling the origin of the high activity of supported palladium catalysts, their active phase, the effect of support, promoters, and defects, and the effect of reaction conditions with the goal of further improving their reactivity. There is an overall agreement in trends, yet there are noticeable differences in some details of the catalytic performance of palladium, including the active phase under reaction conditions and the reasons for catalyst deactivation and poisoning. In this Account we summarize our work in this space using well-defined catalysts, especially model palladium surfaces and those prepared using colloidal nanocrystals as precursors, and spectroscopic tools to unveil important details about the chemistry of supported palladium catalysts. We describe advanced techniques aimed at elucidating the role of several parameters in the performance of palladium catalysts for methane oxidation as well as in engineering catalysts through advancing fundamental understanding and synthesis methods. We report the state of research on active phases and sites, then move to the role of supports and promoters, and finally discuss stability in catalytic performance and the role of water in the palladium active phase. Overall, we want to emphasize the importance of a fundamental understanding in designing and realizing active and stable palladium-based catalysts for methane oxidation as an example for a variety of energy and environmental applications of nanomaterials in catalysis.

6.
Chimia (Aarau) ; 77(3): 132-138, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047816

ABSTRACT

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g., radicals and ketenes, are short-lived and often evade detection. In this review, we summarize recent developments with operando photoelectron photoion coincidence (PEPICO) spectroscopy as a versatile tool capable of detecting elusive intermediates. PEPICO combines the advantages of mass spectrometry and the isomer-selectivity of threshold photoelectron spectroscopy. Recent applications of PEPICO in understanding catalyst synthesis and catalytic reaction mechanisms involving gaseous and surface-confined radical and ketene chemistry will be summarized.

9.
ACS Catal ; 13(20): 13484-13505, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37881789

ABSTRACT

In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.

10.
Angew Chem Int Ed Engl ; 62(44): e202309180, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37699126

ABSTRACT

Copper(II)-containing mordenite (CuMOR) is capable of activation of C-H bonds in C1 -C3 alkanes, albeit there are remarkable differences between the functionalization of ethane and propane compared to methane. The reaction of ethane and propane with CuMOR results in the formation of ethylene and propylene, while the reaction of methane predominantly yields methanol and dimethyl ether. By combining in situ FTIR and MAS NMR spectroscopies as well as time-resolved Cu K-edge X-ray absorption spectroscopy, the reaction mechanism was derived, which differs significantly for each alkane. The formation of ethylene and propylene proceeds via oxidative dehydrogenation of the corresponding alkanes with selectivity above 95 % for ethane and above 85 % for propane. The formation of stable π-complexes of olefins with CuI sites, formed upon reduction of CuII -oxo species, protects olefins from further oxidation and/or oligomerization. This is different from methane, the activation of which proceeds via oxidative hydroxylation leading to the formation of surface methoxy species bonded to the zeolite framework. Our findings constitute one of the major steps in the direct conversion of alkanes to important commodities and open a novel research direction aiming at the selective synthesis of olefins.

11.
Small ; 19(52): e2305771, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635107

ABSTRACT

Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.

12.
J Phys Chem C Nanomater Interfaces ; 127(33): 16636-16644, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37646009

ABSTRACT

Even though confinement was identified as a common element of selective catalysis and simulations predicted enhanced properties of adsorbates within microporous materials, experimental results on the characterization of the adsorbed phase are still rare. In this study, we provide experimental evidence of the increase of propene density in the channels of Zn-MOF-74 by 16(2)% compared to the liquid phase. The ordered propene molecules adsorbed within the pores of the MOF have been localized by in situ neutron powder diffraction, and the results are supported by adsorption studies. The formation of a second adsorbate layer, paired with nanoconfinement-induced short intermolecular distances, causes the efficient packing of the propene molecules and results in an increase of olefin density.

13.
Nat Commun ; 14(1): 4512, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500623

ABSTRACT

Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.

14.
Angew Chem Int Ed Engl ; 62(31): e202306183, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37283089

ABSTRACT

While the structures of Brønsted acid sites (BAS) in zeolites are well understood, those of Lewis acid sites (LAS) remain an active area of investigation. Under hydrated conditions, the reversible formation of framework-associated octahedral aluminum has been observed in zeolites in the acidic form. However, the structure and formation mechanisms are currently unknown. In this work, combined experimental 27 Al NMR spectroscopy and computational data reveal for the first time the details of the zeolite framework-associated octahedral aluminium. The octahedral LAS site becomes kinetically allowed and thermodynamically stable under wet conditions in the presence of multiple nearby BAS sites. The critical condition for the existence of such octahedral LAS appears to be the availability of three protons: at lower proton concentration, either by increasing the Si/Al or by ion-exchange to non-acidic form, the tetrahedral BAS becomes thermodynamically more stable. This work resolves the question about the nature and reversibility of framework-associated octahedral aluminium in zeolites.

15.
Angew Chem Int Ed Engl ; 62(40): e202305140, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37314832

ABSTRACT

The methane-to-methanol (MtM) conversion via the oxygen looping approach using copper-exchanged zeolites has been extensively studied over the last decade. While a lot of research has focussed on maximizing yield and selectivity, little has been directed toward productivity-a metric far more meaningful for evaluating industrial potential. Using copper-exchanged zeolite omega (Cu-omega), a material highly active and selective for the MtM conversion using the isothermal oxygen looping approach, we show that this material exhibits unprecedented potential for industrial valorization. In doing so, we also present a novel methodology combining operando XAS and mass spectrometry for the screening of materials for the MtM conversion in oxygen looping mode.

16.
Angew Chem Int Ed Engl ; 62(34): e202303574, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37292054

ABSTRACT

Cu-exchanged mordenite (MOR) is a promising material for partial CH4 oxidation. The structural diversity of Cu species within MOR makes it difficult to identify the active Cu sites and to determine their redox and kinetic properties. In this study, the Cu speciation in Cu-MOR materials with different Cu loadings has been determined using operando electron paramagnetic resonance (EPR) and operando ultraviolet-visible (UV/Vis) spectroscopy as well as in situ photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy. A novel pathway for CH4 oxidation involving paired [CuOH]+ and bare Cu2+ species has been identified. The reduction of bare Cu2+ ions facilitated by adjacent [CuOH]+ demonstrates that the frequently reported assumption of redox-inert Cu2+ centers does not generally apply. The measured site-specific reaction kinetics show that dimeric Cu species exhibit a faster reaction rate and a higher apparent activation energy than monomeric Cu2+ active sites highlighting their difference in the CH4 oxidation potential.

17.
Chemistry ; 29(38): e202300939, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37144431

ABSTRACT

The tandem hydroformylation-aldol condensation (tandem HF-AC) reaction offers an efficient synthetic route to the synthesis of industrially relevant products. The addition of Zn-MOF-74 to the cobalt-catalyzed hydroformylation of 1-hexene enables tandem HF-AC under milder pressure and temperature conditions than the aldox process, where zinc salts are added to cobalt-catalyzed hydroformylation reactions to promote aldol condensation. The yield of the aldol condensation products increases by up to 17 times compared to that of the homogeneous reaction without MOF and up to 5 times compared to the aldox catalytic system. Both Co2 (CO)8 and Zn-MOF-74 are required to significantly enhance the activity of the catalytic system. Density functional theory simulations and Fourier-transform infrared experiments show that heptanal, the product of hydroformylation, adsorbs on the open metal site (OMS) of Zn-MOF-74, thereby increasing the electrophilic character of the carbonyl carbon atom and facilitating the condensation.


Subject(s)
Cobalt , Propylamines , Zinc
18.
Angew Chem Int Ed Engl ; 62(27): e202301468, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37139920

ABSTRACT

Platinum nanoparticles (NPs) supported by titania exhibit a strong metal-support interaction (SMSI)[1] that can induce overlayer formation and encapsulation of the NP's with a thin layer of support material. This encapsulation modifies the catalyst's properties, such as increasing its chemoselectivity[2] and stabilizing it against sintering.[3] Encapsulation is typically induced during high-temperature reductive activation and can be reversed through oxidative treatments.[1] However, recent findings indicate that the overlayer can be stable in oxygen.[4, 5] Using in situ transmission electron microscopy, we investigated how the overlayer changes with varying conditions. We found that exposure to oxygen below 400 °C caused disorder and removal of the overlayer upon subsequent hydrogen treatment. In contrast, elevating the temperature to 900 °C while maintaining the oxygen atmosphere preserved the overlayer, preventing platinum evaporation when exposed to oxygen. Our findings demonstrate how different treatments can influence the stability of nanoparticles with or without titania overlayers. expanding the concept of SMSI and enabling noble metal catalysts to operate in harsh environments without evaporation associated losses during burn-off cycling.

19.
Angew Chem Int Ed Engl ; 62(1): e202214032, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36349828

ABSTRACT

Operando X-ray absorption spectroscopy identified that the concentration of Fe2+ species in the working state-of-the-art Pt-FeOx catalysts quantitatively correlates to their preferential carbon monoxide oxidation steady-state reaction rate at ambient temperature. Deactivation of such catalysts with time on stream originates from irreversible oxidation of active Fe2+ sites. The active Fe2+ species are presumably Fe+2 O-2 clusters in contact with platinum nanoparticles; they coexist with spectator trivalent oxidic iron (Fe3+ ) and metallic iron (Fe0 ) partially alloyed with platinum. The concentration of active sites and, therefore, the catalyst activity strongly depends on the pretreatment conditions. Fe2+ is the resting state of the active sites in the preferential carbon monoxide oxidation cycle.

20.
ACS Nano ; 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36469418

ABSTRACT

Hydrogen spillover from metal nanoparticles to oxides is an essential process in hydrogenation catalysis and other applications such as hydrogen storage. It is important to understand how far this process is reaching over the surface of the oxide. Here, we present a combination of advanced sample fabrication of a model system and in situ X-ray photoelectron spectroscopy to disentangle local and far-reaching effects of hydrogen spillover in a platinum-ceria catalyst. At low temperatures (25-100 °C and 1 mbar H2) surface O-H formed by hydrogen spillover on the whole ceria surface extending microns away from the platinum, leading to a reduction of Ce4+ to Ce3+. This process and structures were strongly temperature dependent. At temperatures above 150 °C (at 1 mbar H2), O-H partially disappeared from the surface due to its decreasing thermodynamic stability. This resulted in a ceria reoxidation. Higher hydrogen pressures are likely to shift these transition temperatures upward due to the increasing chemical potential. The findings reveal that on a catalyst containing a structure capable to promote spillover, hydrogen can affect the whole catalyst surface and be involved in catalysis and restructuring.

SELECTION OF CITATIONS
SEARCH DETAIL
...