Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 304: 114133, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34864515

ABSTRACT

Zambia has been mining cobalt (Co), copper (Cu), and lead (Pb) for over a century, with discharges entering wetlands without investigations on the level of sediment pollution and how to solve it. This present study investigated: 1) the extent to which Co, Cu, and Pb that enter through mining wastewater were distributed in the sediment of three wetlands (Uchi, Mufulira, and Kabwe) in Zambia and 2) the accumulation and distribution of the heavy metals in two emergent wetland plants, Phragmites mauritianus, and Typha spp. in order to evaluate their potential for phytoremediation of metals. Samples from three sections (inlet, middle section and outlet) of each wetland were analyzed for the heavy metal contents. Sediment contents of Co and Cu were significantly higher in the Uchi wetland than in the other two, while Pb was significantly higher in the Kabwe wetland. Cu in all the wetlands were found to be at levels considered a threat to aquatic life, with Pb contents in Kabwe a risk to human health. Both P. mauritianus and Typha spp acted as excluder species for Co, Cu, and Pb, showing bioaccumulation factor (BAF) < 1 and Translocation factor (TF) < 1 for all wetlands. As neither species accumulated cellularly toxic concentrations of Co, Cu, and Pb, they could grow in the contaminated sediments. Currently, methods used to solve historic mining impacts in Zambian wetlands aim at improving water flow and reducing flooding without attending to the heavy metal contents of the sediments. From this study, P. mauritianus and Typha spp. provide the potential for phytostabilisation to settle and contain polluted sediments.


Subject(s)
Metals, Heavy , Typhaceae , Water Pollutants, Chemical , Cobalt , Humans , Lead , Water Pollutants, Chemical/analysis , Wetlands
2.
J Environ Manage ; 236: 510-518, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30771671

ABSTRACT

There is critical concern over heavy metals because they are biotoxins. The best management option is elimination or at least minimization of effluence into the environment, but in several regions, mining wastewater or acid mine drainage (AMD) effluence into natural wetlands has continued. The ability of wetlands to attenuate heavy metals in mining wastewater and AMD has led to natural wetlands being used as recipients of these effluents in many parts of the world. Ten greenhouse-based laboratory-scale constructed wetlands (GLCW) were set up at IHE-Delft Institute for Water Education to understand the mechanisms and fate of heavy metals in three Zambian wetlands in attenuation of Co, Cu, and Pb. These were operated as Free Water Surface Constructed Wetlands (FWS-CWs). The principal investigations compared how vegetated and unvegetated microcosm artificial wetlands retained controlled additions of heavy metals and the effect of drying and rewetting on that. The potential for phytoremediation using Typha angustifolia was also investigated. Typha angustifolia was planted in three vegetated and compared with one unvegetated treatment. Treatments A, B, and, the investigated, Treatment D received synthetic wastewater containing Co, Cu, and Pb, while a control, Treatment C, received tap water. Water samples were taken throughout the experiment, and sediment samples collected after the first flushing and before drying. Samples of T. angustifolia were taken before drying the wetlands. Analyses for Co, Cu, and Pb were made in the water and sediment, and in roots, stems and leaves of plant samples. The unvegetated Dutch sediments GLCWs removed more Co from wastewater (52%) than the vegetated Dutch and Zambian sediments GLCWs (13% and -4%, respectively). There was a similar removal of Cu among the GLCWs receiving wastewater (81%-87%). The removal of Pb was significantly higher in the vegetated Dutch sediment GLCWs than the unvegetated Dutch sediments GLCWs, (89% and 72%, respectively). It was concluded that a hectare of the vegetated Zambian sediments with similar design parameters of 50 mg/m2.day for Co, Cu, and Pb used in the experiment would on average retain 83 g/day of Co, and 417 g/day of both Cu and Pb. After drying, Co, Cu, and Pb washed out on the first day of rewetting. The washout after that took only a few days. How long the metals washed out of the GLCWs was in order Co > Cu > Pb. T. angustifolia could neither be classified as an accumulator nor an excluder species because the concentrations of Co, Cu, and Pb in the sediments and T. angustifolia were below phytotoxic levels mainly due to a short running period of the experiment.


Subject(s)
Metals, Heavy , Typhaceae , Water Pollutants, Chemical , Biodegradation, Environmental , Lead , Wetlands
3.
J Environ Manage ; 128: 220-5, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23747372

ABSTRACT

The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection.


Subject(s)
Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Wetlands , Ammonium Compounds/isolation & purification , Costs and Cost Analysis , Humans , Kenya , Phosphorus/isolation & purification , Ponds , Population Density , Wastewater , Water Pollutants, Chemical/isolation & purification , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...