Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26237279

ABSTRACT

Heart attacks are often caused by rupture of caps of atherosclerotic plaques in coronary arteries. Cap rupture occurs when cap stress exceeds cap strength. We investigated the effects of plaque morphology and material properties on cap stress. Histological data from 77 coronary lesions were obtained and segmented. In these patient-specific cross sections, peak cap stresses were computed by using finite element analyses. The finite element analyses were 2D, assumed isotropic material behavior, and ignored residual stresses. To represent the wide spread in material properties, we applied soft and stiff material models for the intima. Measures of geometric plaque features for all lesions were determined and their relations to peak cap stress were examined using regression analyses. Patient-specific geometrical plaque features greatly influence peak cap stresses. Especially, local irregularities in lumen and necrotic core shape as well as a thin intima layer near the shoulder of the plaque induce local stress maxima. For stiff models, cap stress increased with decreasing cap thickness and increasing lumen radius (R = 0.79). For soft models, this relationship changed: increasing lumen radius and increasing lumen curvature were associated with increased cap stress (R = 0.66). The results of this study imply that not only accurate assessment of plaque geometry, but also of intima properties is essential for cap stress analyses in atherosclerotic plaques in human coronary arteries.


Subject(s)
Coronary Vessels/pathology , Plaque, Atherosclerotic/pathology , Stress, Mechanical , Finite Element Analysis , Humans , Models, Cardiovascular , Myocardial Infarction/pathology , Tunica Intima/pathology
2.
Biomed Eng Online ; 10: 25, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21477277

ABSTRACT

BACKGROUND: Rupture of the cap of a vulnerable plaque present in a coronary vessel may cause myocardial infarction and death. Cap rupture occurs when the peak cap stress exceeds the cap strength. The mechanical stress within a cap depends on the plaque morphology and the material characteristics of the plaque components. A parametric study was conducted to assess the effect of intima stiffness and plaque morphology on peak cap stress. METHODS: Models with idealized geometries based on histology images of human coronary arteries were generated by varying geometric plaque features. The constructed multi-layer models contained adventitia, media, intima, and necrotic core sections. For adventitia and media layers, anisotropic hyperelastic material models were used. For necrotic core and intima sections, isotropic hyperelastic material models were employed. Three different intima stiffness values were used to cover the wide range reported in literature. According to the intima stiffness, the models were classified as stiff, intermediate and soft intima models. Finite element method was used to compute peak cap stress. RESULTS: The intima stiffness was an essential determinant of cap stresses. The computed peak cap stresses for the soft intima models were much lower than for stiff and intermediate intima models. Intima stiffness also affected the influence of morphological parameters on cap stresses. For the stiff and intermediate intima models, the cap thickness and necrotic core thickness were the most important determinants of cap stresses. The peak cap stress increased three-fold when the cap thickness was reduced from 0.25 mm to 0.05 mm for both stiff and intermediate intima models. Doubling the thickness of the necrotic core elevated the peak cap stress by 60% for the stiff intima models and by 90% for the intermediate intima models. Two-fold increase in the intima thickness behind the necrotic core reduced the peak cap stress by approximately 25% for both intima models. For the soft intima models, cap thickness was less critical and changed the peak cap stress by 55%. However, the necrotic core thickness was more influential and changed the peak cap stress by 100%. The necrotic core angle emerged as a critical determinant of cap stresses where a larger angle lowered the cap stresses. Contrary to the stiff and intermediate intima models, a thicker intima behind the necrotic core increased the peak cap stress by approximately 25% for the soft intima models. Adventitia thickness and local media regression had limited effects for all three intima models. CONCLUSIONS: For the stiff and intermediate intima models, the cap thickness was the most important morphological risk factor. However for soft intima models, the necrotic core thickness and necrotic core angle had a bigger impact on the peak cap stress. We therefore need to enhance our knowledge of intima material properties if we want to derive critical morphological plaque features for risk evaluation.


Subject(s)
Coronary Vessels/physiopathology , Models, Cardiovascular , Tunica Intima/pathology , Computer Simulation , Elasticity , Humans , Image Processing, Computer-Assisted , Myocardial Infarction/physiopathology , Risk Factors , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...