Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Osteoarthr Cartil Open ; 6(2): 100459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38486843

ABSTRACT

Introduction: Articular cartilage makes smooth movement possible and destruction of this tissue leads to loss of joint function. An important biomolecule that determines this function is the large aggregating proteoglycan of cartilage, aggrecan. Aggrecan has a relatively short half-life in cartilage and therefore continuous production of this molecule is essential. Methods: In this narrative review we discuss what is the role of growth factors in driving the synthesis of aggrecan in articular cartilage. A literature search has been done using the search items; cartilage, aggrecan, explant, Transforming Growth factor-ß (TGF-ß), Insulin-like Growth Factor (IGF), Bone Morphogenetic Protein (BMP) and the generic term "growth factors". Focus has been on studies using healthy cartilage and models of cartilage regeneration have been excluded. Results: In healthy adult articular cartilage IGF is the main factor that drives aggrecan synthesis and maintains adequate levels of production. BMP's and TGF-ß have a very limited role but appear to be more important during chondrogenesis and cartilage development. The major role of TGF-ß is not stimulation of aggrecan synthesis but maintenance of the differentiated articular cartilage chondrocyte phenotype. Conclusion: TGF-ß is a factor that is generally considered as an important factor in stimulating aggrecan synthesis in cartilage but its role in this might be very restrained in healthy, adult articular cartilage.

2.
Article in English | MEDLINE | ID: mdl-38552313

ABSTRACT

OBJECTIVES: Systemic sclerosis (SSc) is characterized by multiple clinical manifestations. Vasculopathy is a main disease hallmark and ranges in severity from an exacerbated Raynaud phenomenon to pulmonary arterial hypertension (PAH). The potential involvement of immune system in SSc associated vascular abnormalities is not clear. Here, we set out to study SSc-related immune parameters and determine whether and which peripheral T cell subsets associate with vascular severity in SSc patients. METHODS: Peripheral blood and clinical data were collected from 30 SSc patients, 5 patients with idiopathic pulmonary arterial hypertension (IPAH) and 15 age and sex-matched healthy donors (HD). In this cross-sectional cohort SSc patients with PAH (n = 15) were matched for their age, sex and medication with SSc patients with no signs of PAH (n = 15). Lymphocyte subsets were quantified by multi-colour flow cytometry. RESULTS: SSc patients exhibited elevated percentages of T peripheral helper cells (Tph), CD4+GZMB+ T cells and decreased levels of Th1 cells compared with HD. Increased presence of both CD4+ and CD8+ exhausted-like (CD28-) T cells, characterized by raised cytokine and cytotoxic signature, was also observed in SSc compared with HD blood. Furthermore, IL-4 expressing CD4+CD8+ T cells were significantly increased in SSc peripheral blood. Interestingly, the presence of PAH in SSc was accompanied by a distinct T helper profile, characterized by raised percentages of Th17 and Tph cells. CONCLUSION: SSc patients with severe vasculopathy (presence of PAH) exhibited a distinct T cell profile, suggesting for a potential role of auto-immune inflammation in SSc vascular complications.

3.
Ann Rheum Dis ; 83(4): 488-498, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38123919

ABSTRACT

OBJECTIVES: Cytotoxic T cells and natural killer (NK) cells are central effector cells in cancer and infections. Their effector response is regulated by activating and inhibitory receptors. The regulation of these cells in systemic autoimmune diseases such as systemic sclerosis (SSc) is less defined. METHODS: We conducted ex vivo analysis of affected skin and blood samples from 4 SSc patient cohorts (a total of 165 SSc vs 80 healthy individuals) using single-cell transcriptomics, flow cytometry and multiplex immunofluorescence staining. We further analysed the effects of costimulatory modulation in functional assays, and in a severely affected SSc patient who was treated on compassionate use with a novel anti-CD3/CD7 immunotoxin treatment. RESULTS: Here, we show that SSc-affected skin contains elevated numbers of proliferating T cells, cytotoxic T cells and NK cells. These cells selectively express the costimulatory molecule CD7 in association with cytotoxic, proinflammatory and profibrotic genes, especially in recent-onset and severe disease. We demonstrate that CD7 regulates the cytolytic activity of T cells and NK cells and that selective depletion of CD7+ cells prevents cytotoxic cell-induced fibroblast contraction and inhibits their profibrotic phenotype. Finally, anti-CD3/CD7 directed depletive treatment eliminated CD7+ skin cells and stabilised disease manifestations in a severely affected SSc patient. CONCLUSION: Together, the findings imply costimulatory molecules as key regulators of cytotoxicity-driven pathology in systemic autoimmune disease, yielding CD7 as a novel target for selective depletion of pathogenic cells.


Subject(s)
Scleroderma, Systemic , T-Lymphocytes , Humans , Antigens, CD7/metabolism , Killer Cells, Natural
4.
J Scleroderma Relat Disord ; 8(3): 221-230, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37744051

ABSTRACT

Objectives: Pulmonary hypertension is one of the leading causes of death in systemic sclerosis. Early detection and treatment of pulmonary hypertension in systemic sclerosis is crucial. Nailfold capillaroscopy microscopy, vascular autoantibodies AT1R and ETAR, and several candidate-biomarkers have the potential to serve as noninvasive tools to identify systemic sclerosis patients at risk for developing pulmonary hypertension. Here, we explore the classifying potential of nailfold capillaroscopy microscopy characteristics and serum levels of selected candidate-biomarkers in a sample of systemic sclerosis patients with and without different forms of pulmonary hypertension. Methods: A total of 81 consecutive systemic sclerosis patients were included, 40 with systemic sclerosis pulmonary hypertension and 41 with no pulmonary hypertension. In each group, quantitative and qualitative nailfold capillaroscopy microscopy characteristics, vascular autoantibodies AT1R and ETAR, and serum levels of 24 soluble serum factors were determined. For evaluation of the nailfold capillaroscopy microscopy characteristics, linear regression analysis accounting for age, sex, and diffusing capacity of the lungs for carbon monoxide percentage predicted was used. Autoantibodies and soluble serum factor levels were compared using two-sample t test with equal variances. Results: No statistically significant differences were observed in quantitative or qualitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibody ETAR and AT1R titer between systemic sclerosis-pulmonary hypertension and systemic sclerosis-no pulmonary hypertension. In contrast, several serum levels of soluble factors differed between groups: Endostatin, sVCAM, and VEGFD were increased, and CXCL4, sVEGFR2, and PDGF-AB/BB were decreased in systemic sclerosis-pulmonary hypertension. Random forest classification identified Endostatin and CXCL4 as the most predictive classifiers to distinguish systemic sclerosispulmonary hypertension from systemic sclerosis-no pulmonary hypertension. Conclusion: This study shows the potential for several soluble serum factors to distinguish systemic sclerosis-pulmonary hypertension from systemic sclerosis-no pulmonary hypertension. We found no classifying potential for qualitative or quantitative nailfold capillaroscopy microscopy characteristics, or vascular autoantibodies.

5.
Osteoarthritis Cartilage ; 31(11): 1481-1490, 2023 11.
Article in English | MEDLINE | ID: mdl-37652257

ABSTRACT

OBJECTIVE: Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-ß can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-ß-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN: Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-ß. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-ß-induced chondrocyte hypertrophy. RESULTS: Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-ß, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-ß-induced RUNX2 than blocking both SMAD pathways. CONCLUSION: Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-ß's detrimental from protective function in chondrocytes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Chondrocytes/metabolism , Phosphorylation , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Core Binding Factor Alpha 1 Subunit , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Smad2 Protein/metabolism
6.
Arthritis Res Ther ; 25(1): 30, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36850003

ABSTRACT

BACKGROUND: Soluble urate leads to a pro-inflammatory phenotype in human monocytes characterized by increased production of IL-1ß and downregulation of IL-1 receptor antagonist, the mechanism of which remains to be fully elucidated. Previous transcriptomic data identified differential expression of genes in the transforming growth factor (TGF)-ß pathway in monocytes exposed to urate in vitro. In this study, we explore the role of TGF-ß in urate-induced hyperinflammation in peripheral blood mononuclear cells (PBMCs). METHODS: TGF-ß mRNA in unstimulated PBMCs and protein levels in plasma were measured in individuals with normouricemia, hyperuricemia and gout. For in vitro validation, PBMCs of healthy volunteers were isolated and treated with a dose ranging concentration of urate for assessment of mRNA and pSMAD2. Urate and TGF-ß priming experiments were performed with three inhibitors of TGF-ß signalling: SB-505124, 5Z-7-oxozeaenol and a blocking antibody against TGF-ß receptor II. RESULTS: TGF-ß mRNA levels were elevated in gout patients compared to healthy controls. TGF-ß-LAP levels in serum were significantly higher in individuals with hyperuricemia compared to controls. In both cases, TGF-ß correlated positively to serum urate levels. In vitro, urate exposure of PBMCs did not directly induce TGF-ß but did enhance SMAD2 phosphorylation. The urate-induced pro-inflammatory phenotype of monocytes was partly reversed by blocking TGF-ß. CONCLUSIONS: TGF-ß is elevated in individuals with hyperuricemia and correlated to serum urate concentrations. In addition, the urate-induced pro-inflammatory phenotype in human monocytes is mediated by TGF-ß signalling. Future studies are warranted to explore the intracellular pathways involved and to assess the clinical significance of urate-TGF-ß relation.


Subject(s)
Gout , Hyperuricemia , Humans , Gout/genetics , Leukocytes , Leukocytes, Mononuclear , Uric Acid/pharmacology , Transforming Growth Factor beta/genetics
7.
Cells ; 11(7)2022 04 05.
Article in English | MEDLINE | ID: mdl-35406794

ABSTRACT

During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-ß's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-ß. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-ß-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-ß, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-ß-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-ß-induced expression of crucial hypertrophy factors in chondrocytes.


Subject(s)
Chondrocytes , Osteoarthritis , Chondrocytes/metabolism , Humans , Hypertrophy/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Phenotype , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/genetics , Transforming Growth Factors/metabolism
8.
Sci Rep ; 12(1): 3182, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210510

ABSTRACT

TGF-ß1 is an important growth factor to promote the differentiation of T helper 17 (Th17) and regulatory T cells (Treg). The potential of TGF-ß1 as therapeutic target in T cell-mediated diseases like rheumatoid arthritis (RA) is unclear. We investigated the effect of TGF-ß1 inhibition on murine Th17 differentiation in vitro, on human RA synovial explants ex vivo, and on the development of experimental arthritis in vivo. Murine splenocytes were differentiated into Th17 cells, and the effect of the TGF-ßRI inhibitor SB-505124 was studied. Synovial biopsies were cultured in the presence or absence of SB-505124. Experimental arthritis was induced in C57Bl6 mice and treated daily with SB-505124. Flow cytometry analysis was performed to measure different T cell subsets. Histological sections were analysed to determine joint inflammation and destruction. SB-505124 potently reduced murine Th17 differentiation by decreasing Il17a and Rorc gene expression and IL-17 protein production. SB-505124 significantly suppressed IL-6 production by synovial explants. In vivo, SB-505124 reduced Th17 numbers, while increased numbers of Tregs were observed. Despite this skewed Th17/Treg balance, SB-505124 treatment did not result in suppression of joint inflammation and destruction. Blocking TGF-ß1 signalling suppresses Th17 differentiation and improves the Th17/Treg balance. However, local SB-505124 treatment does not suppress experimental arthritis.


Subject(s)
Arthritis, Experimental/metabolism , Cytokines/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Benzodioxoles/pharmacology , Cell Differentiation/drug effects , Female , Humans , Imidazoles/pharmacology , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyridines/pharmacology , Signal Transduction , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Tissue Culture Techniques/methods
9.
Biomedicines ; 10(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35203525

ABSTRACT

Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.

10.
Tissue Eng Part A ; 28(1-2): 27-37, 2022 01.
Article in English | MEDLINE | ID: mdl-34039008

ABSTRACT

Osteoarthritis (OA) is characterized by progressive articular cartilage loss. Human mesenchymal stromal cells (MSCs) can be used for cartilage repair therapies based on their potential to differentiate into chondrocytes. However, the joint microenvironment is a major determinant of the success of MSC-based cartilage formation. Currently, there is no tool that is able to predict the effect of a patient's OA joint microenvironment on MSC-based cartilage formation. Our goal was to develop a molecular tool that can predict this effect before the start of cartilage repair therapies. Six different promoter reporters (hIL6, hIL8, hADAMTS5, hWISP1, hMMP13, and hADAM28) were generated and evaluated in an immortalized human articular chondrocyte for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm) obtained from 32 different knee OA patients. To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model, while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. We confirmed that OAs-cm of different patients had significantly different effects on sGAG production. In addition, significant correlations were obtained between the effect of the OAs-cm on cartilage formation and promoter reporter outcome. Furthermore, we validated the predictive value of measuring two promoter reporters with an independent cohort of OAs-cm and the effect of 87.5% of the OAs-cm on MSC-based cartilage formation could be predicted. Together, we developed a novel tool to predict the effect of the OA joint microenvironment on MSC-based cartilage formation. This is an important first step toward personalized cartilage repair strategies for OA patients. Impact statement We describe the development of a novel molecular tool to predict if an osteoarthritis joint microenvironment is permissive for cartilage repair or not. Such a tool is of great importance in determining the success of mesenchymal stromal cell-based cartilage repair strategies.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis, Knee , Cartilage, Articular/pathology , Chondrocytes/pathology , Chondrogenesis/physiology , Humans , Osteoarthritis, Knee/pathology
11.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884484

ABSTRACT

Systemic sclerosis (SSc) is a rare, severe, auto-immune disease characterized by inflammation, vasculopathy and fibrosis. Activated (myo)fibroblasts are crucial drivers of this fibrosis. By exploiting their expression of fibroblast activation protein (FAP) to perform targeted photodynamic therapy (tPDT), we can locoregionally deplete these pathogenic cells. In this study, we explored the use of FAP-tPDT in primary skin fibroblasts from SSc patients, both in 2D and 3D cultures. Method: The FAP targeting antibody 28H1 was conjugated with the photosensitizer IRDye700DX. Primary skin fibroblasts were obtained from lesional skin biopsies of SSc patients via spontaneous outgrowth and subsequently cultured on plastic or collagen type I. For 2D FAP-tPDT, cells were incubated in buffer with or without the antibody-photosensitizer construct, washed after 4 h and exposed to λ = 689 nm light. Cell viability was measured using CellTiter Glo®®. For 3D FAP-tPDT, cells were seeded in collagen plugs and underwent the same treatment procedure. Contraction of the plugs was followed over time to determine myofibroblast activity. Results: FAP-tPDT resulted in antibody-dose dependent cytotoxicity in primary skin fibroblasts upon light exposure. Cells not exposed to light or incubated with an irrelevant antibody-photosensitizer construct did not show this response. FAP-tPDT fully prevented contraction of collagen plugs seeded with primary SSc fibroblasts. Even incubation with a very low dose of antibody (0.4 nM) inhibited contraction in 2 out of 3 donors. Conclusions: Here we have shown, for the first time, the potential of FAP-tPDT for the treatment of fibrosis in SSc skin.


Subject(s)
Endopeptidases/administration & dosage , Extracellular Matrix/metabolism , Fibroblasts/drug effects , Fibrosis/prevention & control , Membrane Proteins/administration & dosage , Myofibroblasts/drug effects , Photochemotherapy/methods , Scleroderma, Systemic/drug therapy , Collagen Type I/metabolism , Fibroblasts/pathology , Fibrosis/metabolism , Fibrosis/pathology , Humans , Myofibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology
12.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360888

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-ß signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1ß and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-ß signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1ß was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


Subject(s)
Chondrocytes/metabolism , Chondrocytes/pathology , Osteoarthritis/metabolism , Signal Transduction/genetics , Smad2 Protein/chemistry , Smad2 Protein/metabolism , Smad3 Protein/chemistry , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Adult , Animals , Cattle , Cell Line, Tumor , Humans , Hypertrophy/metabolism , Inflammation/metabolism , Interleukin-1beta/pharmacology , Osteoarthritis/genetics , Osteoarthritis/pathology , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Domains/drug effects , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Smad2 Protein/genetics , Smad3 Protein/genetics , Synovial Membrane/metabolism , Transfection , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
13.
J Pathol ; 255(3): 330-342, 2021 11.
Article in English | MEDLINE | ID: mdl-34357595

ABSTRACT

Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Chondrocytes/pathology , GPI-Linked Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Osteoarthritis/pathology , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Epidermal Growth Factor/metabolism , Humans , Hypertrophy/pathology , Membrane Glycoproteins/metabolism , Mice , Signal Transduction/physiology
14.
Biology (Basel) ; 9(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937960

ABSTRACT

Osteoarthritis (OA) is the most common degenerative joint disease, and it is characterized by articular cartilage loss. In part, OA is caused by aberrant anabolic and catabolic activities of the chondrocyte, the only cell type present in cartilage. These chondrocyte activities depend on the intra- and extracellular signals that the cell receives and integrates into gene expression. The key proteins for this integration are transcription factors. A large number of transcription factors exist, and a better understanding of the transcription factors activated by the various signaling pathways active during OA can help us to better understand the complex etiology of OA. In addition, establishing such a profile can help to stratify patients in different subtypes, which can be a very useful approach towards personalized therapy. In this review, we discuss crucial transcription factors for extracellular matrix metabolism, chondrocyte hypertrophy, chondrocyte senescence, and autophagy in chondrocytes. In addition, we discuss how insight into these factors can be used for treatment purposes.

15.
Cells ; 8(9)2019 08 24.
Article in English | MEDLINE | ID: mdl-31450621

ABSTRACT

Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor ß (TGFß) family. Members of this family include the TGFßs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFß family in cartilage biology by listing several TGFß family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFß family signaling, leading to disturbed cartilage metabolism and disease.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cartilage, Articular/metabolism , Transforming Growth Factor beta/metabolism , Aging/metabolism , Animals , Homeostasis , Humans , Inflammation/metabolism , Signal Transduction , Stress, Mechanical
16.
Tissue Eng Part A ; 25(15-16): 1155-1166, 2019 08.
Article in English | MEDLINE | ID: mdl-30526407

ABSTRACT

IMPACT STATEMENT: Catabolic factors present in a damaged joint inhibit chondrogenic differentiation of mesenchymal stem cells, thereby reducing the chance for successful cartilage formation. By improving stem cell-based cartilage repair with interleukin-37 (IL37), we might be able to inhibit the worsening progression of focal cartilage defects and prevent further development of joint diseases such as osteoarthritis. This will avoid chronic pain and impaired joint mobility for patients and reduce costs for society.


Subject(s)
Cellular Microenvironment , Chondrogenesis , Cytoprotection , Inflammation/pathology , Interleukin-1/metabolism , Mesenchymal Stem Cells/metabolism , Osteoarthritis/pathology , Cartilage/metabolism , Cartilage/pathology , Cellular Microenvironment/drug effects , Cellular Microenvironment/genetics , Chondrogenesis/drug effects , Chondrogenesis/genetics , Collagen/metabolism , Culture Media, Conditioned/pharmacology , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Mesenchymal Stem Cells/drug effects , Osteoarthritis/genetics , Proteolysis/drug effects
17.
Front Immunol ; 9: 2452, 2018.
Article in English | MEDLINE | ID: mdl-30483246

ABSTRACT

Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.


Subject(s)
Myofibroblasts/pathology , Scleroderma, Systemic/immunology , Scleroderma, Systemic/physiopathology , Apoptosis/physiology , Collagen Type I/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Humans , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Mast Cells/immunology , Neutrophils/immunology , Th2 Cells/immunology
18.
Arthritis Res Ther ; 19(1): 112, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28569204

ABSTRACT

BACKGROUND: Dysregulated transforming growth factor ß (TGFß) signaling is implicated in osteoarthritis development, making normalizing TGFß signaling a possible therapy. Theoretically, this can be achieved with small molecule inhibitors specifically targeting the various TGFß receptors and downstream mediators. In this study we explore in primary chondrocytes the use of small molecule inhibitors to target TGFß-induced pSmad1/5/9-, pSmad2/3- and TGFß-activated kinase 1 (TAK1)-dependent signaling. METHOD: Primary bovine chondrocytes and explants were isolated from metacarpophalangeal joints. To modulate TGFß signaling the activin receptor-like kinase (ALK)1/2/3/6 inhibitor LDN-193189, the ALK4/5/7 inhibitor SB-505124 and the TAK1 inhibitor (5Z)-7-Oxozeaenol were used. pSmad1/5 and pSmad2 were measured using western blot analysis and TGFß1-induced gene expression was measured using quantitative real time PCR (qPCR). RESULTS: In chondrocytes, TGFß1 strongly induced both pSmad1/5 and pSmad2. Remarkably, LDN-193189 did not inhibit TGFß-induced pSmad1/5. In contrast, SB-505124 did inhibit both TGFß-induced Smad2 and Smad1/5 phosphorylation. Furthermore, (5Z)-7-Oxozeaenol also profoundly inhibited TGFß-induced pSmad2 and pSmad1/5. Importantly, both SB-505124 and (5Z)-7-Oxozeaenol did not significantly inhibit constitutively active ALK1, making an off-target effect unlikely. Additionally, LDN-193189 was able to potently inhibit BMP2/7/9-induced pSmad1/5, showing its functionality. On gene expression, LDN-193189 did not affect TGFß1-induced regulation, whereas both SB-505124 and (5Z)-7-Oxozeaenol did. Similar results were obtained in cartilage explants, although pSmad1/5 was not strongly induced by addition of TGFß1. CONCLUSION: Our data suggest that ALK5 kinase activity plays a central role in both TGFß-induced Smad1/5 and Smad2/3 phosphorylation, making it difficult to separate both pathways with the use of currently available small molecule inhibitors. Furthermore, our data regarding (5Z)-7-Oxozeaenol suggest that TAK1 facilitates Smad-dependent signaling.


Subject(s)
Chondrocytes/metabolism , Enzyme Inhibitors/pharmacology , MAP Kinase Kinase Kinases/metabolism , Osteoarthritis/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Animals , Benzodioxoles/pharmacology , Cattle , Chondrocytes/drug effects , Imidazoles/pharmacology , Phosphorylation , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta1/metabolism , Zearalenone/analogs & derivatives , Zearalenone/pharmacology
19.
Rheumatology (Oxford) ; 56(3): 351-361, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27940589

ABSTRACT

Objective: A crucial feature of OA is cartilage degradation. This process is mediated by pro-inflammatory cytokines, among other factors, via induction of matrix-degrading enzymes. Interleukin 37 (IL37) is an anti-inflammatory cytokine and is efficient in blocking the production of pro-inflammatory cytokines during innate immune responses. We hypothesize that IL37 is therapeutic in treating the inflammatory cytokine cascade in human OA chondrocytes and can act as a counter-regulatory cytokine to reduce cartilage degradation in OA. Methods: Human OA cartilage was obtained from patients undergoing total knee or hip arthroplasty. Immunohistochemistry was applied to study IL37 protein expression in cartilage biopsies from OA patients. Induction of IL37 expression by IL1ß, OA synovium-conditioned medium and TNFα was investigated in human OA chondrocytes. Adenoviral overexpression of IL37 followed by IL1ß stimulation was performed to investigate the anti-inflammatory potential of IL37. Results: IL37 expression was detected in cartilage biopsies of OA patients and induced by IL1ß. After IL1ß stimulation, increased IL1ß, IL6 and IL8 expression was observed in OA chondrocytes. Elevated IL37 levels diminished the IL1ß-induced IL1ß , IL6 and IL8 gene levels and IL1ß and IL8 protein levels. In addition to the reduction in pro-inflammatory cytokine expression, IL37 reduced MMP1 , MMP3 , MMP13 and disintegrin and metalloproteinase with thrombospondin motifs 5 gene levels and MMP3 and MMP13 protein levels. Conclusion: IL37 is induced by IL1ß, and IL37 itself reduced IL1ß, IL6 and IL8 production, indicating that IL37 is able to induce a counter-regulatory anti-inflammatory feedback loop in chondrocytes. In addition, IL37 dampens catabolic enzyme expression. This supports IL37 as a potential therapeutic target in OA.


Subject(s)
Chondrocytes/metabolism , Interleukin-1/metabolism , Interleukin-1beta/pharmacology , Osteoarthritis , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adenoviridae , Blotting, Western , Chondrocytes/drug effects , Disintegrins/drug effects , Disintegrins/genetics , Disintegrins/metabolism , Humans , Immunohistochemistry , Interleukin-1/genetics , Interleukin-1beta/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/drug effects , Interleukin-8/genetics , Interleukin-8/metabolism , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/drug effects , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , RNA, Messenger/drug effects , Real-Time Polymerase Chain Reaction
20.
PLoS One ; 10(3): e0121123, 2015.
Article in English | MEDLINE | ID: mdl-25822997

ABSTRACT

SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. METHODS AND RESULTS: Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-ß, and that anti-TGF-ß antibodies blocked Th17 differentiation. CONCLUSION: Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.


Subject(s)
Dairying/standards , Extracellular Vesicles/metabolism , Milk/chemistry , Milk/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Animals , Antibodies/immunology , Cattle , Cell Differentiation/immunology , Female , Luciferases , Macrophages/metabolism , Mice , Microscopy, Electron, Transmission , Nanoparticles , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric , Tetraspanin 30/metabolism , Transforming Growth Factor beta/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...