Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 1191: 91-105, 2014.
Article in English | MEDLINE | ID: mdl-25178786

ABSTRACT

Quantitative intracellular metabolite measurements are essential for systems biology and modeling of cellular metabolism. The MS-based quantification is error prone because (1) several sampling processing steps have to be performed, (2) the sample contains a complex mixture of partly compounds with the same mass and similar retention time, and (3) especially salts influence the ionization efficiency. Therefore internal standards are required, best for each measured compound. The use of labeled biomass, (13)C extract, is a valuable tool, reducing the standard deviations of intracellular concentration measurements significantly (especially regarding technical reproducibility). Using different platforms, i.e., LC-MS and GC-MS, a large number of different metabolites can be quantified (currently about 110).


Subject(s)
Carbon Isotopes , Metabolic Flux Analysis/methods , Metabolomics/methods , Carbon Isotopes/metabolism , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Metabolomics/statistics & numerical data
2.
Appl Environ Microbiol ; 78(15): 5052-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22582063

ABSTRACT

The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.


Subject(s)
Arabinose/metabolism , Culture Media/metabolism , Galactose/metabolism , Hexuronic Acids/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Xylose/metabolism , Animal Feed , Dose-Response Relationship, Drug , Fermentation/drug effects , Flow Cytometry , Hydrogen-Ion Concentration , Kinetics , Saccharomyces cerevisiae/metabolism
3.
Methods Mol Biol ; 708: 131-46, 2011.
Article in English | MEDLINE | ID: mdl-21207287

ABSTRACT

In this chapter, we describe a method for the quantitative analysis of glycolytic intermediates using ion chromatography-mass spectrometry (IC-MS) and gas chromatography (GC)-MS as complementary methods. With IC-MS-MS, pyruvate, glucose-6-phosphate, fructuse-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, and the sum of 2-phosphoglyceraldehyde + 3-phosphoglyceraldehyde can be quantified. With GC-MS using selected ion monitoring, glyceraldehyde-3-phosphate, dihydroxyacetonephosphate, 2-phosphoglyceraldehyde, and 3-phosphoglyceraldehyde can be analyzed. The derivatization for GC-MS is performed in two steps. In the first step, the keto and the aldehyde groups are oximated. In the next step, a silylation with N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) is performed, giving TMS-MOX derivatives of the glycolytic intermediates. The derivatives are separated on a GC column and detected with MS in SIM mode.


Subject(s)
Chromatography, Ion Exchange/methods , Gas Chromatography-Mass Spectrometry/methods , Glycolysis , Carbohydrates/analysis , Carbohydrates/chemistry , Carbohydrates/isolation & purification , Chromatography, Ion Exchange/standards , Gas Chromatography-Mass Spectrometry/standards , Reference Standards
4.
Anal Chem ; 81(17): 7379-89, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19653633

ABSTRACT

Accurate determination of intracellular metabolite levels requires well-validated procedures for sampling and sample treatment. Several methods exist for metabolite extraction, but the literature is contradictory regarding the adequacy and performance of each technique. Using a strictly quantitative approach, we have re-evaluated five methods (hot water, HW; boiling ethanol, BE; chloroform-methanol, CM; freezing-thawing in methanol, FTM; acidic acetonitrile-methanol, AANM) for the extraction of 44 intracellular metabolites (phosphorylated intermediates, amino acids, organic acids, nucleotides) from S. cerevisiae cells. Two culture modes were investigated (batch and chemostat) to check for growth condition dependency, and three targeted platforms were employed (two LC-MS and one GC/MS) to exclude analytical bias. Additionally, for the determination of metabolite recoveries, we applied a novel approach based on addition of (13)C-labeled internal standards at different stages of sample processing. We found that the choice of extraction method can drastically affect measured metabolite levels, to an extent that for some metabolites even the direction of changes between growth conditions can be inverted. The best performances, in terms of efficacy and metabolite recoveries, were achieved with BE and CM, which yielded nearly identical levels for the metabolites analyzed. According to our results, AANM performs poorly in yeast and FTM cannot be considered adequate as an extraction method, as it does not ensure inactivation of enzymatic activity.


Subject(s)
Chemical Fractionation/methods , Metabolome , Metabolomics/methods , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Freezing , Gas Chromatography-Mass Spectrometry , Hot Temperature , Solvents , Water
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(27): 3231-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19647496

ABSTRACT

A gas chromatography isotope dilution mass spectrometry (GC-IDMS) method was developed for the quantification of the metabolites of the non-oxidative part of pentose phosphate pathway (PPP). A mid-polar GC column (Zebron ZB-AAA, 10m, film composition 50% phenyl 50% dimethyl polysiloxane) was used for the chromatographic separation of the intermediates. The optimized GC-MS procedure resulted in improved separation performances and higher sensitivities compared to previous methods. Furthermore, the use of (13)C-labeled cell extracts as internal standards improved the data quality and eliminated the need to perform a recovery check for each metabolite. The applicability of the new method was demonstrated by analyzing intracellular metabolite levels in samples derived from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae at steady state as well as following a short-term glucose pulse. The major achievements of the proposed quantitative method are the independent quantification of the epimers ribulose-5-phosphate and xylulose-5-posphate and the measurement of compounds present at very low concentrations in biological samples such as erythrose-4-phosphate and glyceraldehyde-3-phosphate.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Pentose Phosphate Pathway , Pentosephosphates/analysis , Ribulosephosphates/analysis , Saccharomyces cerevisiae/metabolism , Carbon Isotopes/chemistry , Glyceraldehyde 3-Phosphate/analysis , Isotope Labeling , Metabolomics/methods , Oximes/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sugar Phosphates/analysis , Trimethylsilyl Compounds/chemistry
6.
Anal Biochem ; 388(2): 213-9, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19250917

ABSTRACT

A new sensitive and accurate analytical method has been developed for quantification of intracellular nucleotides in complex biological samples from cultured cells of different microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Penicillium chrysogenum. This method is based on ion pair reversed phase liquid chromatography electrospray ionization isotope dilution tandem mass spectrometry (IP-LC-ESI-ID-MS/MS. A good separation and low detection limits were observed for these compounds using dibutylamine as volatile ion pair reagent in the mobile phase of the LC. Uniformly (13)C-labeled isotopes of nucleotides were used as internal standards for both extraction and quantification of intracellular nucleotides. The method was validated by determining the linearity, sensitivity, and repeatability.


Subject(s)
Chromatography, Liquid/methods , Isotopes/analysis , Nucleotides/analysis , Tandem Mass Spectrometry/methods , Escherichia coli/genetics , Nucleotides/chemistry , Penicillium chrysogenum/genetics , Saccharomyces cerevisiae/genetics , Spectrometry, Mass, Electrospray Ionization
7.
Anal Biochem ; 386(1): 9-19, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19084496

ABSTRACT

Quantitative metabolomics of microbial cultures requires well-designed sampling and quenching procedures. We successfully developed and applied a differential method to obtain a reliable set of metabolome data for Escherichia coli K12 MG1655 grown in steady-state, aerobic, glucose-limited chemostat cultures. From a rigorous analysis of the commonly applied quenching procedure based on cold aqueous methanol, it was concluded that it was not applicable because of release of a major part of the metabolites from the cells. No positive effect of buffering or increasing the ionic strength of the quenching solution was observed. Application of a differential method in principle requires metabolite measurements in total broth and filtrate for each measurement. Different methods for sampling of culture filtrate were examined, and it was found that direct filtration without cooling of the sample was the most appropriate. Analysis of culture filtrates revealed that most of the central metabolites and amino acids were present in significant amounts outside the cells. Because the turnover time of the pools of extracellular metabolites is much larger than that of the intracellular pools, the differential method should also be applicable to short-term pulse response experiments without requiring measurement of metabolites in the supernatant during the dynamic period.


Subject(s)
Escherichia coli/metabolism , Metabolome , Amino Acids/metabolism , Filtration , Methods , Research Design
8.
FEMS Yeast Res ; 5(6-7): 559-68, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15780655

ABSTRACT

Metabolic-flux analyses in microorganisms are increasingly based on (13)C-labeling data. In this paper a new approach for the measurement of (13)C-label distributions is presented: rapid sampling and quenching of microorganisms from a cultivation, followed by extraction and detection by liquid chromatography-mass spectrometry of free intracellular metabolites. This approach allows the direct assessment of mass isotopomer distributions of primary metabolites. The method is applied to the glycolytic and pentose phosphate pathways of Saccharomyces cerevisiae strain CEN.PK113-7D grown in an aerobic, glucose-limited chemostat culture. Detailed investigations of the measured mass isotopomer distributions demonstrate the accuracy and information-richness of the obtained data. The mass fractions are fitted with a cumomer model to yield the metabolic fluxes. It is estimated that 24% of the consumed glucose is catabolized via the pentose phosphate pathway. Furthermore, it is found that turnover of storage carbohydrates occurs. Inclusion of this turnover in the model leads to a large confidence interval of the estimated split ratio.


Subject(s)
Carbon Isotopes/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid/methods , Culture Media , Glycolysis , Mass Spectrometry/methods , Pentose Phosphate Pathway , Saccharomyces cerevisiae/growth & development
9.
Anal Biochem ; 336(2): 164-71, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15620880

ABSTRACT

A novel method was developed for the quantitative analysis of the microbial metabolome using a mixture of fully uniformly (U) (13)C-labeled metabolites as internal standard (IS) in the metabolite extraction procedure the subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. This mixture of fully U (13)C-labeled metabolites was extracted from biomass of Saccharomyces cerevisiae cultivated in a fed-batch fermentation on fully U (13)C-labeled substrates. The obtained labeled cell extract contained, in principle, the whole yeast metabolome, allowing the quantification of any intracellular metabolite of interest in S. cerevisiae. We have applied the labeled cell extract as IS in the analysis of glycolytic and tricarboxylic acid (TCA) cycle intermediates in S. cerevisiae sampled in both steady-state and transient conditions following a glucose pulse. The use of labeled IS effectively reduced errors due to variations occurring in the analysis and sample processing. As a result, the linearity of calibration lines and the precision of measurements were significantly improved. Coextraction of the labeled cell extract with the samples also eliminates the need to perform elaborate recovery checks for each metabolite to be analyzed. In conclusion, the method presented leads to less workload, more robustness, and a higher precision in metabolome analysis.


Subject(s)
Cell Extracts/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Carbon Isotopes , Glucose/chemistry , Glucose/metabolism , Radioisotope Dilution Technique/standards , Reference Standards , Spectrometry, Mass, Electrospray Ionization/standards
10.
Biotechnol Bioeng ; 88(2): 157-67, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15449293

ABSTRACT

This article presents the dynamic responses of several intra- and extracellular components of an aerobic, glucose-limited chemostat culture of Saccharomyces cerevisiae to glucose and ethanol pulses within a time window of 75 sec. Even though the ethanol pulse cannot perturb the glycolytic pathway directly, a distinct response of the metabolites at the lower part of glycolysis was found. We suggest that this response is an indirect effect, caused by perturbation of the NAD/NADH ratio, which is a direct consequence of the conversion of ethanol into acetaldehyde. This effect of the NAD/NADH ratio on glycolysis might serve as an additional explanation for the observed decrease of 3PG, 2PG, and PEP during a glucose pulse. The responses measured during the ethanol pulse were used to evaluate the allosteric regulation of glycolysis. Our results confirm that FBP stimulates pyruvate kinase and suggest that this effect is pronounced. Furthermore, it appears that PEP does not play an important role in the allosteric regulation of phosphofructo kinase.


Subject(s)
Ethanol/metabolism , Glucose/metabolism , Glycolysis/physiology , Saccharomyces cerevisiae/physiology , Kinetics , NAD/metabolism , Phosphoenolpyruvate/metabolism , Phosphofructokinases/metabolism , Pyruvate Kinase/metabolism
11.
Biotechnol Bioeng ; 79(6): 674-81, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12209815

ABSTRACT

In this article we present a novel device, the BioScope, which allows elucidation of in vivo kinetics of microbial metabolism via perturbation experiments. The perturbations are carried out according to the continuous-flow method. The BioScope consists of oxygen permeable silicon tubing, connected to the fermentor, through which the broth flows at constant velocity. The tubing has a special geometry (serpentine channel) to ensure plug flow. After leaving the fermentor, the broth is mixed with a small flow of perturbing agent. This represents the start of the perturbation. The broth is sampled at different locations along the tubing, corresponding to different incubation times. The maximal incubation time is 69 s; the minimally possible time interval between the samples is 3-4 s. Compared to conventional approaches, in which the perturbation is carried out in the fermentor, the BioScope offers a number of advantages. (1) A large number of different perturbation experiments can be carried out on the same day, because the physiological state of the fermentor is not perturbed. (2) In vivo kinetics during fed-batch experiments and in large-scale reactors can be investigated. (3) All metabolites of interest can be measured using samples obtained in a single experiment, because the volume of the samples is unlimited. (4) The amount of perturbing agent spent is minimal, because only a small volume of broth is perturbed. (5) The system is completely automated. Several system properties, including plug-flow characteristics, mixing, oxygen and carbon dioxide transfer rates, the quenching time, and the reproducibility have been explored, with satisfactory results. Responses of several glycolytic intermediates in Saccharomyces cerevisiae to a glucose pulse, measured using a conventional approach are compared to results obtained with the BioScope. The agreement between the results demonstrates that the BioScope is indeed a promising device for studying in vivo kinetics.


Subject(s)
Bioreactors , Flow Cytometry/instrumentation , Flow Cytometry/methods , Glucose/metabolism , Membranes, Artificial , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Equipment Design , Fermentation , Glycolysis , Oxygen/metabolism , Sample Size , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...