Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 84(7): 2577-80, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10404840

ABSTRACT

Sulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferase (SULT1E1) is expressed among other tissues in the uterus. Here we demonstrate for the first time that SULT1E1 catalyzes the facile sulfation of the prohormone T4, the active hormone T3 and the metabolites rT3 and 3,3'-diiodothyronine (3,3'-T2) with preference for rT3 approximately 3,3'-T2 > T3 approximately T4. Thus, a single enzyme is capable of sulfating two such different hormones as the female sex hormone and thyroid hormone. The potential role of SULT1E1 in fetal thyroid hormone metabolism needs to be considered.


Subject(s)
Isoenzymes/metabolism , Sulfates/metabolism , Sulfotransferases/metabolism , Thyroid Hormones/metabolism , Diiodothyronines/metabolism , Estradiol/metabolism , Estrone/metabolism , Humans , Kinetics , Recombinant Proteins/metabolism , Substrate Specificity , Thyroxine/metabolism , Triiodothyronine/metabolism , Triiodothyronine, Reverse/metabolism
2.
J Clin Endocrinol Metab ; 84(4): 1357-64, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10199779

ABSTRACT

Sulfation is an important pathway of thyroid hormone metabolism that facilitates the degradation of the hormone by the type I iodothyronine deiodinase, but little is known about which human sulfotransferase isoenzymes are involved. We have investigated the sulfation of the prohormone T4, the active hormone T3, and the metabolites rT3 and 3,3'-diiodothyronine (3,3'-T2) by human liver and kidney cytosol as well as by recombinant human SULT1A1 and SULT1A3, previously known as phenol-preferring and monoamine-preferring phenol sulfotransferase, respectively. In all cases, the substrate preference was 3,3'-T2 >> rT3 > T3 > T4. The apparent Km values of 3,3'-T2 and T3 [at 50 micromol/L 3'-phosphoadenosine-5'-phosphosulfate (PAPS)] were 1.02 and 54.9 micromol/L for liver cytosol, 0.64 and 27.8 micromol/L for kidney cytosol, 0.14 and 29.1 micromol/L for SULT1A1, and 33 and 112 micromol/L for SULT1A3, respectively. The apparent Km of PAPS (at 0.1 micromol/L 3,3'-T2) was 6.0 micromol/L for liver cytosol, 9.0 micromol/L for kidney cytosol, 0.65 micromol/L for SULT1A1, and 2.7 micromol/L for SULT1A3. The sulfation of 3,3'-T2 was inhibited by the other iodothyronines in a concentration-dependent manner. The inhibition profiles of the 3,3'-T2 sulfotransferase activities of liver and kidney cytosol obtained by addition of 10 micromol/L of the various analogs were better correlated with the inhibition profile of SULT1A1 than with that of SULT1A3. These results indicate similar substrate specificities for iodothyronine sulfation by native human liver and kidney sulfotransferases and recombinant SULT1A1 and SULT1A3. Of the latter, SULT1A1 clearly shows the highest affinity for both iodothyronines and PAPS, but it remains to be established whether it is the prominent isoenzyme for sulfation of thyroid hormone in human liver and kidney.


Subject(s)
Sulfotransferases/metabolism , Adult , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Substrate Specificity , Sulfotransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...