Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Acad Nutr Diet ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763462

ABSTRACT

BACKGROUND: While the resting metabolic rate (RMR) is crucial for understanding athletes' energy requirements, limited information is available on the RMR of Paralympic athletes. OBJECTIVE: To determine RMR and its predictors in a diverse cohort of Paralympic athletes and evaluate the agreement between measured and predicted RMR from both newly developed and preexisting equations. DESIGN: This cross-sectional study, conducted between September 2020 and September 2022 in the Netherlands and Norway, assessed RMR in Paralympic athletes by ventilated hood indirect calorimetry and body composition by dual energy X-ray absorptiometry. PARTICIPANTS: Sixty-seven Paralympic athletes (male: n=37; female: n=30) competing in various sports, with a spinal cord disorder (SCD; n=22), neurological condition (n=8), limb deficiency (n=18), visual or hearing impairment (n=7) or other disability (n=12) participated. MAIN OUTCOME MEASURES: RMR, fat-free mass (FFM), body mass, and triiodothyronine (T3) concentrations were assessed. STATISTICAL ANALYSES: Multiple regression analyses were conducted with height, FFM, body mass, sex, T3 concentration, and disabilities as potential predictors of RMR. Differences between measured and predicted RMRs were analyzed for individual accuracy, root mean square error (RMSE), and intraclass correlation (ICC). RESULTS: Mean RMR was 1386±258 kcal/day for females and 1686±302 kcal/day for males. Regression analysis identified FFM, T3 concentrations and the presence of a spinal cord disorder (SCD), as the main predictors of RMR (adjusted R2=0.71; F=50.3; P<0.001). The novel prediction equations based on these data, as well as pre-existing equations of Chun et al. and Nightingale and Gorgey performed well on accuracy (>60% of participants within 10% of measured RMR), had a good reliability (ICC >0.78), and low RMSE (≤141 kcal). CONCLUSION: FFM, total T3 concentrations, and the presence of SCD are the main predictors of RMR in Paralympic athletes. Both the current study's prediction equations and those by Chun et al. and Nightingale and Gorgey align well with measured RMR, offering accurate prediction equations for the RMR of Paralympic athletes.

2.
Bone Rep ; 21: 101767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38694186

ABSTRACT

Background: Bone health may be a concern in Paralympic athletes, given the presence of multiple risk factors predisposing these athletes to low bone mineral density (BMD). Objective: We aimed to assess the prevalence of low BMD among Paralympic athletes participating in various sport disciplines, and to identify potential risk factors for low BMD. Methods: Seventy Paralympic athletes, of whom 51 % were wheelchair-dependent, were included in this cross-sectional study. BMD of the whole-body, lumbar spine, total hip, and femoral neck were assessed by dual-energy x-ray absorptiometry. Comparisons between groups were conducted by one-way ANOVA, and regression analyses were conducted to identify potential risk factors for low BMD. Results: The prevalence of low BMD (Z-score < -1.0) was highest at femoral neck (34 %), followed by total hip (31 %), whole-body (21 %), and lumbar spine (18 %). Wheelchair-dependent athletes had significantly lower BMD Z-scores compared to the non-wheelchair-dependent athletes at whole-body level (-0.5 ± 1.4 vs 0.2 ± 1.3; P = 0.04), total hip (-1.1 ± 1.2 vs 0.0 ± 1.1; P < 0.01), and femoral neck (-1.0 ± 1.3 vs -0.1 ± 1.2; P < 0.01). At the lumbar spine, low BMD was completely absent in wheelchair basketball and tennis players. Regression analyses identified body mass, wheelchair dependence, and type of sport, as the main risk factors for low BMD. Conclusions: In this cohort of Paralympic athletes, low BMD is mainly present at the hip, and to a lesser extent at the whole-body and lumbar spine. The most prominent risk factors for low BMD in Paralympic athletes are related to mechanical loading patterns, including wheelchair use, the type of sport, and body mass.

3.
J Sports Sci ; 42(4): 313-322, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38478743

ABSTRACT

In contrast to male football players, research on the nutritional requirements of female football players is limited. This study aimed to assess total daily energy expenditure (TDEE) in professional female football players, along with body composition, physical activity and dietary intake. This observational study included 15 professional football players playing in the highest Dutch Women's League. TDEE was assessed by doubly labelled water over 14 days, along with resting metabolic rate (RMR; ventilated hood), fat-free mass (FFM; dual-energy x-ray absorptiometry), and dietary intake (24-h recalls). Physical activity energy expenditure (PAEE) was derived from subtracting RMR and estimated diet-induced thermogenesis (10%) from TDEE. TDEE was 2882 ± 278 kcal/day (58 ± 5 kcal/kg FFM) and significantly (p < 0.05) correlated with FFM (r = 0.62). PAEE was 1207 ± 213 kcal/d. Weighted energy intake was 2344 kcal [2023-2589]. Carbohydrate intakes were 3.2 ± 0.7, 4.4 ± 1.1 and 5.3 ± 1.9 g/kg body mass for rest, training and match days, respectively, while weighted mean protein intake was 1.9 ± 0.4 g/kg body mass. In conclusion, the energy requirements of professional female football players are moderate to high and can be explained by the substantial PAEE. To fuel these requirements, sports nutritionists should consider shifting the players' focus towards prioritizing adequate carbohydrate intakes, rather than emphasizing high protein consumption.


Subject(s)
Basal Metabolism , Body Composition , Dietary Proteins , Energy Intake , Energy Metabolism , Soccer , Humans , Female , Energy Metabolism/physiology , Energy Intake/physiology , Soccer/physiology , Young Adult , Adult , Dietary Proteins/administration & dosage , Basal Metabolism/physiology , Netherlands , Dietary Carbohydrates/administration & dosage , Nutritional Requirements , Sports Nutritional Physiological Phenomena , Exercise/physiology , Thermogenesis/physiology , Diet
4.
Med Sci Sports Exerc ; 56(5): 963-971, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38194704

ABSTRACT

PURPOSE: Advanced insight in energy requirements of Paralympic athletes is imperative for optimizing their nutritional counseling. Given the lack of accurate data on total daily energy expenditure (TDEE) of Paralympic athletes, this study aimed to assess energy expenditure and nutritional intake of a large cohort of Paralympic athletes, across different sports and disabilities. METHODS: In this cross-sectional study, 48 Dutch and Norwegian Paralympic athletes (19 male/29 female) with various disabilities, competing in Para cycling, wheelchair tennis, wheelchair basketball, Para Nordic skiing, and alpine skiing participated. TDEE was assessed by the gold standard doubly labeled water method over a 14-d period, resting metabolic rate by ventilated hood indirect calorimetry, energy intake by three unannounced 24-h dietary recalls, body composition by dual-energy x-ray absorptiometry, and exercise training duration by a training log. RESULTS: Mean TDEE was 2908 ± 797 kcal·d -1 , ranging from 2322 ± 340 kcal·d -1 for wheelchair basketball players to 3607 ± 1001 kcal·d -1 for Para cyclists. Regression analysis identified fat-free mass, exercise duration, and the presence of a spinal cord disorder as the primary predictors of TDEE, explaining up to 73% of the variance in TDEE. Athletes' energy intake (2363 ± 905 kcal·d -1 ) was below their TDEE, whereas their body mass remained constant, indicating underreporting. Carbohydrate intake (4.1 ± 1.9 g·kg -1 body mass) was low, even when considering underreporting, whereas protein intake (1.8 ± 0.6 g·kg -1 body mass) was relatively high. CONCLUSIONS: Paralympic athletes display moderate- to high-energy expenditure, varying across sports and individuals. Much of the variation in TDEE can be attributed to individual differences in fat-free mass and exercise duration. This study establishes the benchmarks for energy requirements of Paralympic athletes, serving as the foundation for future dietary guidelines within this population.


Subject(s)
Basketball , Para-Athletes , Humans , Male , Female , Water , Cross-Sectional Studies , Energy Metabolism , Energy Intake , Athletes , Body Composition
5.
J Nutr ; 154(2): 479-490, 2024 02.
Article in English | MEDLINE | ID: mdl-38092152

ABSTRACT

BACKGROUND: Postprandial metabolic responses following dairy consumption have mostly been studied using stand-alone dairy products or milk-derived nutrients. OBJECTIVE: Assessing the impact of ingesting dairy products as part of a common breakfast on postprandial aminoacidemia, glycemic control, markers of bone metabolism, and satiety. METHODS: In this randomized, crossover study, 20 healthy young males and females consumed on 3 separate occasions an iso-energetic breakfast containing no dairy (NO-D), 1 dairy (ONE-D), or 2 dairy (TWO-D) products. Postprandial concentrations of amino acids, glucose, insulin, glucagon-like peptide-1 (GLP-1), calcium, parathyroid hormone (PTH), and markers of bone formation (P1NP) and resorption (CTX-I) were measured before and up to 300 min after initiating the breakfast, along with VAS-scales to assess satiety. RESULTS: Plasma essential and branched-chained amino acids availability (expressed as total area under the curve (tAUC)) increased in a dose-dependent manner (P<0.05 for all comparisons). Plasma glucose tAUCs were lower in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons). Plasma GLP-1 tAUC increased in a dose-dependent manner (P<0.05 for all comparisons), whereas no differences were observed in plasma insulin tAUC between conditions (P>0.05 for all comparisons). Serum calcium tAUCs were higher in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons), along with lower PTH tAUCs in ONE-D and TWO-D compared with NO-D (P=0.001 for both comparisons). In accordance, serum CTX-I concentrations were lower in the late postprandial period in ONE-D and TWO-D compared with NO-D (P<0.01 for both comparisons). No differences were observed in P1NP tAUCs between conditions (P>0.05). The tAUC for satiety was higher in TWO-D compared with NO-D and ONE-D (P<0.05 for both comparisons). CONCLUSIONS: Iso-energetic replacement of a carbohydrate-rich breakfast component with one serving of dairy improves postprandial amino acid availability, glycemic control, and bone metabolism. Adding a second serving of dairy in lieu of carbohydrates augments postprandial amino acid and GLP-1 concentrations while further promoting satiety. This study was registered at https://doi.org/10.1186/ISRCTN13531586 with Clinical Trial Registry number ISRCTN13531586.


Subject(s)
Blood Glucose , Postprandial Period , Male , Female , Animals , Blood Glucose/metabolism , Breakfast , Cross-Over Studies , Glycemic Control , Calcium , Dairy Products , Insulin , Milk/metabolism , Glucagon-Like Peptide 1 , Amino Acids
6.
Int J Sport Nutr Exerc Metab ; 34(1): 38-47, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37883634

ABSTRACT

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.


Subject(s)
Bone Density , Collagen Type I , Humans , Male , Female , Collagen Type I/pharmacology , Collagen , Absorptiometry, Photon , Dietary Supplements , Biomarkers
7.
Med Sci Sports Exerc ; 55(10): 1792-1802, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37202878

ABSTRACT

INTRODUCTION: Protein ingestion during recovery from exercise has been reported to augment myofibrillar protein synthesis rates, without increasing muscle connective protein synthesis rates. It has been suggested that collagen protein may be effective in stimulating muscle connective protein synthesis. The present study assessed the capacity of both whey and collagen protein ingestion to stimulate postexercise myofibrillar and muscle connective protein synthesis rates. METHODS: In a randomized, double-blind, parallel design, 45 young male ( n = 30) and female ( n = 15) recreational athletes (age, 25 ± 4 yr; body mass index, 24.1 ± 2.0 kg·m -2 ) were selected to receive primed continuous intravenous infusions with l -[ring- 13 C 6 ]-phenylalanine and l -[3,5- 2 H 2 ]-tyrosine. After a single session of resistance type exercise, subjects were randomly allocated to one of three groups ingesting either 30 g whey protein (WHEY, n = 15), 30 g collagen protein (COLL, n = 15) or a noncaloric placebo (PLA, n = 15). Blood and muscle biopsy samples were collected over a subsequent 5-h recovery period to assess both myofibrillar and muscle connective protein synthesis rates. RESULTS: Protein ingestion increased circulating plasma amino acid concentrations ( P < 0.05). The postprandial rise in plasma leucine and essential amino acid concentrations was greater in WHEY compared with COLL, whereas plasma glycine and proline concentrations increased more in COLL compared with WHEY ( P < 0.05). Myofibrillar protein synthesis rates averaged 0.041 ± 0.010, 0.036 ± 0.010, and 0.032 ± 0.007%·h -1 in WHEY, COLL and PLA, respectively, with only WHEY resulting in higher rates when compared with PLA ( P < 0.05). Muscle connective protein synthesis rates averaged 0.072 ± 0.019, 0.068 ± 0.017, and 0.058 ± 0.018%·h -1 in WHEY, COLL, and PLA, respectively, with no significant differences between groups ( P = 0.09). CONCLUSIONS: Ingestion of whey protein during recovery from exercise increases myofibrillar protein synthesis rates. Neither collagen nor whey protein ingestion further increased muscle connective protein synthesis rates during the early stages of postexercise recovery in both male and female recreational athletes.


Subject(s)
Collagen , Muscle Proteins , Humans , Male , Female , Young Adult , Adult , Muscle Proteins/metabolism , Whey Proteins , Collagen/metabolism , Muscle, Skeletal/metabolism , Eating , Polyesters/pharmacology , Postprandial Period , Dietary Proteins
8.
Bone ; 170: 116705, 2023 05.
Article in English | MEDLINE | ID: mdl-36804484

ABSTRACT

INTRODUCTION: We assessed whether collagen supplementation augments the effects of high-impact exercise on bone turnover and whether a higher exercise frequency results in a greater benefit for bone metabolism. METHODS: In this randomized, cross-over trial, 14 healthy males (age 24 ± 4 y, BMI 22.0 ± 2.1 kg/m2) performed 5-min of high-impact exercise once (JUMP+PLA and JUMP+COL) or twice daily (JUMP2+COL2) during a 3-day intervention period, separated by a 10-day wash out period. One hour before every exercise bout participants ingested 20 g hydrolysed collagen (JUMP+COL and JUMP2+COL2) or a placebo control (JUMP+PLA). Blood markers of bone formation (P1NP) and resorption (CTXI) were assessed in the fasted state before the ingestion of the initial test drinks and 24, 48, and 72 h thereafter. In JUMP+PLA and JUMP+COL, additional blood samples were collected in the postprandial state at 1, 2, 3, 4, 5 and 13 h after ingestion of the test drink. RESULTS: In the postprandial state, serum P1NP concentrations decreased marginally from 99 ± 37 to 93 ± 33 ng/mL in JUMP+COL, and from 97 ± 32 to 92 ± 31 ng/mL in JUMP+PLA, with P1NP levels having returned to baseline levels after 13 h (time-effect, P = 0.053). No differences in serum P1NP concentrations were observed between JUMP+PLA and JUMP+COL (time x treatment, P = 0.58). Serum CTX-I concentrations showed a ~ 50 % decline (time, P < 0.001) in the postprandial state in JUMP+COL (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL) and JUMP+PLA (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL), with no differences between treatments (time x treatment, P = 0.17). Fasted serum P1NP concentrations increased ~8 % by daily jumping exercise (time-effect, P < 0.01), with no differences between treatments (time x treatment, P = 0.71). Fasted serum CTX-I concentrations did not change over time (time-effect, P = 0.41) and did not differ between treatments (time x treatment, P = 0.58). CONCLUSIONS: Five minutes of high-impact exercise performed daily stimulates bone formation during a 3-day intervention period. This was indicated by an increase in fasted serum P1NP concentrations, rather than an acute increase in post-exercise serum P1NP concentrations. Collagen supplementation or an increase in exercise frequency does not further increase serum P1NP concentrations. The bone resorption marker CTX-I was not affected by daily short-duration high-impact exercise with or without concurrent collagen supplementation.


Subject(s)
Bone Remodeling , Collagen Type I , Male , Humans , Young Adult , Adult , Cross-Over Studies , Biomarkers/metabolism , Collagen , Procollagen , Dietary Supplements , Polyesters/pharmacology , Peptide Fragments
9.
Med Sci Sports Exerc ; 55(5): 957-965, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36595659

ABSTRACT

PURPOSE: This study aimed to assess the prevalence of low bone mineral density (BMD) in male and female elite cyclists at different stages of a professional cycling career and to identify potential risk factors of low BMD. METHODS: In this cross-sectional study, 93 male and female early career, advanced career, and postcareer elite cyclists completed dual-energy x-ray absorptiometry at the hip, femoral neck, lumbar spine, and total body; blood sampling; assessment of training history and injuries; and the bone-specific physical activity questionnaire. Backward stepwise multiple regression analyses were conducted to explore associations between BMD and its potential predictors in early and advanced career (i.e., active career) cyclists. RESULTS: With a mean Z -score of -0.3 ± 0.8, -1.5 ± 1.0, and -1.0 ± 0.9, low BMD ( Z -score < -1) at the lumbar spine was present in 27%, 64%, and 50% of the early, advanced, and postcareer elite male cyclists, respectively. Lumbar spine Z -scores of -0.9 ± 1.0, -1.0 ± 1.0, and 0.2 ± 1.4 in early, advanced, and postcareer elite female cyclists, respectively, indicated low BMD in 45%, 45%, and 20% of these female subpopulations. Regression analyses identified body mass index, fracture incidence, bone-specific physical activity, and triiodothyronine as the main factors associated with BMD. CONCLUSIONS: Low BMD is highly prevalent in elite cyclists, especially in early career females and advanced career males and females. These low BMD values may not fully recover after the professional cycling career, given the substantial prevalence of low BMD in retired elite cyclists. Exploratory analyses indicated that low BMD is associated with low body mass index, fracture incidence, lack of bone-specific physical activity, and low energy availability in active career elite cyclists.


Subject(s)
Bone Density , Bone Diseases, Metabolic , Humans , Male , Female , Cross-Sectional Studies , Absorptiometry, Photon , Risk Factors , Femur Neck , Lumbar Vertebrae/diagnostic imaging
11.
Appl Physiol Nutr Metab ; 47(5): 547-554, 2022 May.
Article in English | MEDLINE | ID: mdl-35138972

ABSTRACT

We aimed to assess the association between gastrointestinal (GI) injury, complaints, and food intake in 60-km ultramarathon runners. Thirty-three ultramarathon runners provided pre- and post-race blood samples for assessment of GI injury by intestinal fatty-acid binding protein (I-FABP), and inflammatory response by interleukin (IL)-6, IL-8, tumour necrosis factor alpha (TNF-α), and C-reactive protein (CRP). GI complaints and nutritional intake were reported by a post-race questionnaire. GI complaints were reported by 73% of the runners, of which 20% reported 1 or 2 severe complaints. IL-6, IL8, TNF-α, and CRP increased significantly from pre- to post-race (P < 0.001 for all biomarkers), while I-FABP did not (1375 [IQR: 1264-2073] to 1726 [IQR: 985-3287] pg/mL; P = 0.330). The 'GI complaints score', as the integral of the number and severity of GI complaints, did not correlate with ΔI-FABP (rs: -0.050, P = 0.790) or energy intake (rs: 0.211, P = 0.260). However, there was a significant negative correlation between energy intake and ΔI-FABP (rs: -0.388, P = 0.031). In conclusion, GI complaints were neither associated with food intake nor GI injury as assessed by plasma I-FABP response. Energy intake, however, was inversely related to the I-FABP response to exercise. This finding suggests that substantial energy intakes during exercise may prevent exercise-induced GI injury as assessed by the I-FABP response. Novelty: No association between gastrointestinal complaints and gastrointestinal injury (I-FABP response) or food intake was present. There was an inverse correlation between energy intake and plasma I-FABP response, suggesting that higher energy intakes may prevent gastrointestinal injury as assessed by the I-FABP response.


Subject(s)
Running , Eating , Exercise/physiology , Gastrointestinal Tract/metabolism , Interleukin-6/metabolism , Running/physiology , Tumor Necrosis Factor-alpha/metabolism
12.
Temperature (Austin) ; 8(3): 209-222, 2021.
Article in English | MEDLINE | ID: mdl-34485618

ABSTRACT

The environmental conditions during the Tokyo Olympic and Paralympic Games are expected to be challenging, which increases the risk for participating athletes to develop heat-related illnesses and experience performance loss. To allow safe and optimal exercise performance of Dutch elite athletes, the Thermo Tokyo study aimed to determine thermoregulatory responses and performance loss among elite athletes during exercise in the heat, and to identify personal, sports-related, and environmental factors that contribute to the magnitude of these outcomes. For this purpose, Dutch Olympic and Paralympic athletes performed two personalized incremental exercise tests in simulated control (15°C, relative humidity (RH) 50%) and Tokyo (32°C, RH 75%) conditions, during which exercise performance and (thermo)physiological parameters were obtained. Thereafter, athletes were invited for an additional visit to conduct anthropometric, dual-energy X-ray absorptiometry (DXA), and 3D scan measurements. Collected data also served as input for a thermophysiological computer simulation model to estimate the impact of a wider range of environmental conditions on thermoregulatory responses. Findings of this study can be used to inform elite athletes and their coaches on how heat impacts their individual (thermo)physiological responses and, based on these data, advise which personalized countermeasures (i.e. heat acclimation, cooling interventions, rehydration plan) can be taken to allow safe and maximal performance in the challenging environmental conditions of the Tokyo 2020 Olympic and Paralympic Games.

14.
J Sports Sci ; 39(3): 322-331, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33012216

ABSTRACT

The current double blind, randomized, placebo-controlled trial with two parallel groups aimed to assess the impact of whey protein supplementation on recovery of muscle function and muscle soreness following eccentric exercise. During a 9-day period, forty recreationally active males received twice daily supplementation with either whey protein (PRO; 60 g/day) or an iso-energetic amount of carbohydrate (CON). Muscle function and soreness were assessed before, and 0, 3, 24, 48, and 72 h after performing 100 drop jumps. Recovery of isometric maximal voluntary contraction (MVC) did not significantly differ between groups (timextreatment, P = 0.56). In contrast, the recovery of isokinetic MVC at 90°·s-1 was faster in CON as opposed to PRO (timextreatment interaction, P = 0.044). Recovery of isokinetic MVC at 180°·s-1 was also faster in CON as opposed to PRO (timextreatment interaction, P = 0.011). Recovery of countermovement jump performance did not differ between groups (timextreatment interaction, P = 0.52). Muscle soreness, CK and CRP showed a transient increase over time (P < 0.001), with no differences between groups. In conclusion, whey protein supplementation does not accelerate recovery of muscle function or attenuate muscle soreness and inflammation during 3 days of recovery from a single bout of eccentric exercise.


Subject(s)
Dietary Supplements , Exercise/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Myalgia/prevention & control , Whey Proteins/administration & dosage , Biomarkers/blood , C-Reactive Protein/metabolism , Creatine Kinase/blood , Dietary Carbohydrates/administration & dosage , Double-Blind Method , Humans , Hydrocortisone/blood , Inflammation/blood , Knee/physiology , Male , Muscle Contraction , Young Adult
15.
Eur J Sport Sci ; 21(6): 871-878, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32594854

ABSTRACT

Purpose: Dietary nitrate has been shown to enhance muscle contractile function and has, therefore, been linked to increased muscle power and sprint exercise performance. However, the impact of dietary nitrate supplementation on maximal strength, performance and muscular endurance remains to be established. Methods: Fifteen recreationally active males (25 ± 4 y, BMI 24 ± 3 kg/m2) participated in a randomized double-blinded cross-over study comprising two 6-d supplementation periods; 140 mL/d nitrate-rich (BR; 985 mg/d) and nitrate-depleted (PLA; 0.37 mg/d) beetroot juice. Three hours following the last supplement, we assessed countermovement jump (CMJ) performance, maximal strength and power of the upper leg by voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180 and 300°·s-1), and muscular endurance (total workload) by 30 reciprocal isokinetic voluntary contractions at 180°·s-1. Results: Despite differences in plasma nitrate (BR: 879 ± 239 vs. PLA: 33 ± 13 µmol/L, P < 0.001) and nitrite (BR: 463 ± 217 vs. PLA: 176 ± 50 nmol/L, P < 0.001) concentrations prior to exercise testing, CMJ height (BR: 39.3 ± 6.3 vs. PLA: 39.6 ± 6.3 cm; P = 0.39) and muscular endurance (BR: 3.93 ± 0.69 vs. PLA: 3.90 ± 0.66 kJ; P = 0.74) were not different between treatments. In line, isometric strength (P > 0.50 for both angles) and isokinetic knee extension power (P > 0.33 for all velocities) did not differ between treatments. Isokinetic knee flexion power was significantly higher following BR compared with PLA ingestion at 60°·s-1 (P = 0.001), but not at 120°·s-1 (P = 0.24), 180°·s-1 (P = 0.066), and 300°·s-1 (P = 0.36). Conclusion: Nitrate supplementation does not improve maximal strength, countermovement jump performance and muscular endurance in healthy, active males.


Subject(s)
Beta vulgaris , Dietary Supplements , Fruit and Vegetable Juices , Movement/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Adult , Cross-Over Studies , Double-Blind Method , Humans , Isometric Contraction/physiology , Male , Nitrates/administration & dosage , Nitrates/blood , Nitrites/blood , Physical Endurance/physiology , Physical Functional Performance , Upper Extremity/physiology
16.
Med Sci Sports Exerc ; 51(10): 2041-2049, 2019 10.
Article in English | MEDLINE | ID: mdl-31525168

ABSTRACT

INTRODUCTION: Recently, it has been speculated that protein supplementation may further augment the adaptations to chronic endurance exercise training. We assessed the effect of protein supplementation during chronic endurance exercise training on whole-body oxidative capacity (V˙O2max) and endurance exercise performance. METHODS: In this double-blind, randomized, parallel placebo-controlled trial, 60 recreationally active males (age, 27 ± 6 yr; body mass index, 23.8 ± 2.6 kg·m; V˙O2max, 47 ± 6 mL·min·kg) were subjected to 12 wk of triweekly endurance exercise training. After each session and each night before sleep, participants ingested either a protein supplement (PRO; 28.7 g casein protein) or an isoenergetic carbohydrate placebo (PLA). Before and after the 12 wk of training, V˙O2max and endurance exercise performance (~10-km time trial) were assessed on a cycle ergometer. Muscular endurance (total workload achieved during 30 reciprocal isokinetic contractions) was assessed by isokinetic dynamometry and body composition by dual-energy x-ray absorptiometry. Mixed-model ANOVA was applied to assess whether training adaptations differed between groups. RESULTS: Endurance exercise training induced an 11% ± 6% increase in V˙O2max (time effect, P < 0.0001), with no differences between groups (PRO, 48 ± 6 to 53 ± 7 mL·min·kg; PLA, 46 ± 5 to 51 ± 6 mL·min·kg; time-treatment interaction, P = 0.50). Time to complete the time trial was reduced by 14% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.15). Muscular endurance increased by 6% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.84). Leg lean mass showed an increase after training (P < 0.0001), which tended to be greater in PRO compared with PLA (0.5 ± 0.7 vs 0.2 ± 0.6 kg, respectively; time-treatment interaction, P = 0.073). CONCLUSION: Protein supplementation after exercise and before sleep does not further augment the gains in whole-body oxidative capacity and endurance exercise performance after chronic endurance exercise training in recreationally active, healthy young males.


Subject(s)
Adaptation, Physiological , Dietary Proteins/administration & dosage , Dietary Supplements , Endurance Training , Physical Endurance/drug effects , Adult , Body Composition , Body Mass Index , Double-Blind Method , Humans , Male , Muscle Strength/physiology , Oxygen Consumption/physiology , Physical Endurance/physiology , Young Adult
17.
J Nutr ; 149(9): 1533-1542, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31174213

ABSTRACT

BACKGROUND: Excess lipid availability has been associated with the development of anabolic resistance. As such, obesity may be accompanied by impairments in muscle protein metabolism. OBJECTIVE: We hypothesized that basal and postprandial muscle protein synthesis rates are lower in obese than in lean men. METHODS: Twelve obese men [mean ± SEM age: 48 ± 2 y; BMI (in kg/m2): 37.0 ± 1.5; body fat: 32 ± 2%] and 12 age-matched lean controls (age: 43 ± 3 y; BMI: 23.4 ± 0.4; body fat: 21 ± 1%) received primed continuous L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine infusions and ingested 25 g intrinsically L-[1-13C]-phenylalanine labeled whey protein. Repeated blood and muscle samples were obtained to assess protein digestion and amino acid absorption kinetics, and basal and postprandial myofibrillar protein synthesis rates. RESULTS: Exogenous phenylalanine appearance rates increased after protein ingestion in both groups (P < 0.001), with a total of 53 ± 1% and 53 ± 2% of dietary protein-derived phenylalanine appearing in the circulation over the 5-h postprandial period in lean and obese men, respectively (P = 0.82). After protein ingestion, whole-body protein synthesis and oxidation rates increased to a greater extent in lean men than in the obese (P-interaction < 0.05), resulting in a higher whole-body protein net balance in the lean than in the obese (7.1 ± 0.2 and 4.6 ± 0.4 µmol phenylalanine · h-1 · kg-1, respectively; P-interaction < 0.001). Myofibrillar protein synthesis rates increased from 0.030 ± 0.002 and 0.028 ± 0.003%/h in the postabsorptive period to 0.034 ± 0.002 and 0.035 ± 0.003%.h-1 in the 5-h postprandial period (P = 0.03) in lean and obese men, respectively, with no differences between groups (P-interaction = 0.58). CONCLUSIONS: Basal, postabsorptive myofibrillar protein synthesis rates do not differ between lean and obese middle-aged men. Postprandial protein handling, including protein digestion and amino acid absorption, and the postprandial muscle protein synthetic response after the ingestion of 25 g whey protein are not impaired in obese men. This trial was registered at www.trialregister.nl as NTR4060.


Subject(s)
Muscle Proteins/biosynthesis , Myofibrils/metabolism , Obesity/metabolism , Postprandial Period/physiology , Thinness/metabolism , Adult , Amino Acids/blood , Exercise , Fatty Acids, Nonesterified/blood , Humans , Male , Middle Aged , Phenylalanine/metabolism
18.
J Sports Sci ; 37(24): 2759-2767, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30773995

ABSTRACT

Selecting effective dietary strategies for professional football players requires comprehensive information on their energy expenditure (EE) and dietary intake. This observational study aimed to assess EE and dietary intake over a 14-day period in a representative group (n = 41) of professional football players playing in the Dutch Premier League (Eredivisie). Daily EE, as assessed by doubly labelled water, was 13.8 ± 1.5 MJ/day, representing a physical activity level (PAL) of 1.75 ± 0.13. Weighted mean energy intake (EI), as assessed by three face-to-face 24-h recalls, was 11.1 ± 2.9 MJ/day, indicating 18 ± 15% underreporting of EI. Daily EI was higher on match days (13.1 ± 4.1 MJ) compared with training (11.1 ± 3.4 MJ; P < 0.01) and rest days (10.5 ± 3.1 MJ; P < 0.001). Daily carbohydrate intake was significantly higher during match days (5.1 ± 1.7 g/kg body mass (BM)) compared with training (3.9 ± 1.5 g/kg BM; P < 0.001) and rest days (3.7 ± 1.4 g/kg BM; P < 0.001). Weighted mean protein intake was 1.7 ± 0.5 g/kg BM. Daytime distribution of protein intake was skewed, with lowest intakes at breakfast and highest at dinner. In conclusion, daily EE and PAL of professional football players are modest. Daily carbohydrate intake should be increased to maximize performance and recovery. Daily protein intake seems more than adequate, but could be distributed more evenly throughout the day.


Subject(s)
Diet , Energy Metabolism , Soccer , Sports Nutritional Physiological Phenomena , Adolescent , Adult , Athletes , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Humans , Male , Young Adult
19.
J Clin Endocrinol Metab ; 104(4): 994-1004, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30423113

ABSTRACT

Rationale: Muscle mass maintenance is largely regulated by the postprandial rise in muscle protein synthesis rates. It remains unclear whether postprandial protein handling differs between women and men. Methods: Healthy men (43 ± 3 years; body mass index, 23.4 ± 0.4 kg/m2; n = 12) and women (46 ± 2 years; body mass index, 21.3 ± 0.5 kg/m2; n = 12) received primed continuous infusions of l-[ring-2H5]-phenylalanine and l-[ring-3,5-2H2]-tyrosine and ingested 25 g intrinsically l-[1-13C]-phenylalanine-labeled whey protein. Blood samples and muscle biopsies were collected to assess dietary protein digestion and amino acid absorption kinetics as well as basal and postprandial myofibrillar protein synthesis rates. Results: Plasma phenylalanine and leucine concentrations rapidly increased after protein ingestion (both P < 0.001), with no differences between middle-aged women and men (Time × Sex, P = 0.307 and 0.529, respectively). The fraction of dietary protein-derived phenylalanine that appeared in the circulation over the 5-hour postprandial period averaged 56 ± 1% and 53 ± 1% in women and men, respectively (P = 0.145). Myofibrillar protein synthesis rates increased (Time, P = 0.010) from 0.035 ± 0.004%/h and 0.030 ± 0.002%/h in the postabsorptive state (t test, P = 0.319) to 0.045 ± 0.002%/h and 0.034 ± 0.002%/h in the 5-hour postprandial phase in middle-aged women and men, respectively, with higher postprandial myofibrillar protein synthesis rates in women compared with men (t test, P = 0.005). Middle-aged women showed a greater increase in myofibrillar protein synthesis rates during the early (0 to 2 hours) postprandial period compared with men (Time × Sex, P = 0.001). Conclusions: There are no differences in postabsorptive myofibrillar protein synthesis rates between middle-aged women and men. The myofibrillar protein synthetic response to the ingestion of 25 g whey protein is greater in women than in men.


Subject(s)
Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Protein Biosynthesis/drug effects , Whey Proteins/administration & dosage , Administration, Oral , Adult , Female , Healthy Volunteers , Humans , Male , Middle Aged , Muscle, Skeletal/drug effects , Postprandial Period , Sex Factors
20.
Eur J Sport Sci ; 18(9): 1245-1254, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29938604

ABSTRACT

AIMS: Exercise combined with adipose tissue lipolytic inhibition augments intramuscular lipid and glycogen use in type 2 diabetes patients. The present study investigates the impact of adipose tissue lipolytic inhibition during exercise on subsequent postprandial glycemic control in type 2 diabetes patients. METHODS: Fourteen male type 2 diabetes patients (age 65 ± 2 years, HbA1c 6.7 ± 0.1% (50 ± 2 mmol/mol)) participated in a double-blind placebo-controlled randomized cross-over study in which subjects performed endurance-type exercise after being administered 250 mg of a nicotinic acid analogue (acipimox; ACP) or a placebo (PLA). A control experiment was included in which no exercise was performed (CON). RESULTS: Sixty minutes of endurance-type exercise (at 45% Wpeak) did not significantly lower circulating plasma glucose and insulin excursions in PLA when compared with CON (P = .300). Acipimox administration strongly reduced circulating plasma FFA concentrations during exercise (P < .001). Circulating plasma glucose and insulin excursions were substantially lower during 7.5 h of recovery from exercise (i.e. postprandial) in ACP when compared with either CON (P = .041 and P = .002, respectively) or PLA (P = .009 and P = .001, respectively). CONCLUSIONS: Collectively, exercise with adipose tissue lipolytic inhibition reduces postprandial blood glucose and insulin excursions and, as such, further improves glycemic control in male type 2 diabetes patients.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Exercise/physiology , Hypolipidemic Agents/administration & dosage , Lipid Metabolism , Pyrazines/administration & dosage , Administration, Oral , Blood Glucose , Cross-Over Studies , Double-Blind Method , Fatty Acids/blood , Glycogen/metabolism , Humans , Insulin/blood , Lactic Acid/blood , Male , Middle Aged , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...