Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 7(1): 214-227, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28070285

ABSTRACT

We evaluated effects of atmospheric deposition of nitrogen on the composition of forest understorey vegetation both in space and time, using repeated data from the European wide monitoring program ICP-Forests, which focuses on normally managed forest. Our aim was to assess whether both spatial and temporal effects of deposition can be detected by a multiple regression approach using data from managed forests over a relatively short time interval, in which changes in the tree layer are limited. To characterize the vegetation, we used indicators derived from cover percentages per species using multivariate statistics and indicators derived from the presence/absence, that is, species numbers and Ellenberg's indicator values. As explanatory variables, we used climate, altitude, tree species, stand age, and soil chemistry, besides deposition of nitrate, ammonia and sulfate. We analyzed the effects of abiotic conditions at a single point in time by canonical correspondence analysis and multiple regression. The relation between the change in vegetation and abiotic conditions was analyzed using redundancy analysis and multiple regression, for a subset of the plots that had both abiotic data and enough species to compute a mean Ellenberg N value per plot using a minimum of three species. Results showed that the spatial variation in the vegetation is mainly due to "traditional" factors such as soil type and climate, but a statistically significant part of the variation could be ascribed to atmospheric deposition of nitrate. The change in the vegetation over the past c. 10 years was also significantly correlated to nitrate deposition. Although the effect of deposition on the individual species could not be clearly defined, the effect on the vegetation as a whole was a shift toward nitrophytic species as witnessed by an increase in mean Ellenberg's indicator value.

2.
Ecology ; 91(11): 3218-28, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21141183

ABSTRACT

The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.


Subject(s)
Ecosystem , Plant Development , Plant Leaves/physiology , Plants/metabolism , Soil , Photosynthesis , Sunlight , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...