Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 363(6431)2019 03 08.
Article in English | MEDLINE | ID: mdl-30846569

ABSTRACT

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Subject(s)
Antibodies, Neutralizing/chemistry , Biomimetic Materials/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/prevention & control , Piperazines/pharmacology , Pyridines/pharmacology , Tetrazoles/pharmacology , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacokinetics , Bronchi/virology , Cells, Cultured , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Madin Darby Canine Kidney Cells , Mice , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Respiratory Mucosa/virology , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Viral Fusion Protein Inhibitors/administration & dosage , Viral Fusion Protein Inhibitors/pharmacokinetics
2.
Science ; 358(6362): 496-502, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28971971

ABSTRACT

Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.


Subject(s)
Antiviral Agents/chemistry , Drug Design , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/drug effects , Peptides, Cyclic/chemistry , Virus Internalization/drug effects , Animals , Antibodies, Neutralizing/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Complementarity Determining Regions/chemistry , Crystallography, X-Ray , Humans , Male , Mice , Mice, Inbred BALB C , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Protein Conformation
3.
Eur J Med Chem ; 46(10): 4808-19, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21880399

ABSTRACT

Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.


Subject(s)
D-Amino-Acid Oxidase/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Animals , Calorimetry/methods , D-Amino-Acid Oxidase/metabolism , Enzyme Inhibitors/pharmacokinetics , Humans , Ligands , Mice , Molecular Dynamics Simulation , Protein Binding , Rats , Surface Plasmon Resonance/methods , Thermodynamics
4.
J Med Chem ; 54(20): 7030-54, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21866910

ABSTRACT

The 5-HT(6) receptor (5-HT(6)R) has been in the spotlight for several years regarding CNS-related diseases. We set out to discover novel, neutral 5-HT(6)R antagonists to improve off-target selectivity compared to basic amine-containing scaffolds dominating the field. High-throughput screening identified the N'-(sulfonyl)pyrazoline-1-carboxamidine scaffold as a promising neutral core for starting hit-to-lead. Medicinal chemistry, molecular modeling, small molecule NMR and X-ray crystallography were subsequently applied to optimize the leads into antagonists (compounds 1-49) displaying high 5-HT(6)R affinity with optimal off-target selectivity. Unique structural features include a pseudoaromatic system and an internal hydrogen bond freezing the bioactive conformation. While physicochemical properties and CNS availability were generally favorable, significant efforts had to be made to improve metabolic stability. The optimized structure 42 is an extremely selective, hERG-free, high-affinity 5-HT(6)R antagonist showing good human in vitro metabolic stability. Rat pharmacokinetic data were sufficiently good to enable further in vivo profiling.


Subject(s)
Amidines/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , Sulfonamides/chemical synthesis , Amidines/chemistry , Amidines/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Guinea Pigs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Ligands , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Wistar , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
5.
Comb Chem High Throughput Screen ; 5(8): 623-30, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12470259

ABSTRACT

NMR based screening has become an important tool in the pharmaceutical industry. Methods that provide information on the location of small molecule binding sites on the surface of a drug target (e. g. SAR-by-NMR and related techniques) are of particular interest. In order to extend the applicability of such techniques to drug targets of higher molecular weight, selective labeling strategies may be employed. Dual-amino acid selective labeling and site directed non-native amino acid replacement (SNAAR) allow for the selective detection of NMR resonances of a specific amino acid residue. This results in significantly reduced spectral complexity, which not only enables application to higher molecular weight systems, but also eliminates the need for sequential resonance assignment in order to identify the binding site. Regio-selective (or segmental) labeling of an entire protein domain of a multi domain protein may also be achieved. Labeling only a selected part of a multi domain protein (e. g. a catalytic or ligand binding domain) is an attractive way to simplify the spectral interpretation without disturbing the system under study.


Subject(s)
Amino Acids/analysis , Isotope Labeling/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Amino Acid Sequence , Amino Acids/chemical synthesis , Binding Sites , Carbon Isotopes , Ligands , Molecular Sequence Data , Mutagenesis, Site-Directed , Nitrogen Isotopes , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity
6.
J Am Chem Soc ; 124(40): 11874-80, 2002 Oct 09.
Article in English | MEDLINE | ID: mdl-12358531

ABSTRACT

The time-limiting step in HTS often is the development of an appropriate assay. In addition, hits from HTS fairly often turn out to be false positives and generally display unfavorable properties for further development. Here we describe an alternative process for hit generation, applied to the human adipocyte fatty acid binding protein FABP4. A small molecular ligand for FABP4 that blocks the binding of endogenous ligands may be developed into a drug for the treatment of type-2 diabetes. Using NMR spectroscopy, we screened FABP4 for low-affinity binders in a diversity library consisting of small soluble scaffolds, which yielded 52 initial hits in total. The potencies of these hits were ranked, and crystal structures of FABP4 complexes for two of the hits were obtained. The structural data were subsequently used to direct similarity searches for available analogues, as well as chemical synthesis of 12 novel analogues. In this way, a series of three selective FABP4 ligands with attractive pharmacochemical profiles and potencies of 10 microM or better was obtained.


Subject(s)
Carrier Proteins/metabolism , Drug Evaluation, Preclinical/methods , Neoplasm Proteins , Tumor Suppressor Proteins , Amino Acid Sequence , Carrier Proteins/chemistry , Fatty Acid-Binding Protein 7 , Fatty Acid-Binding Proteins , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Kinetics , Ligands , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Sequence Homology, Amino Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...