Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 2(12): e00215, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28018984

ABSTRACT

Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 µm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate a science-based approach to risk assessment.

2.
J Anim Sci ; 93(10): 4977-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26523590

ABSTRACT

This study investigated effects of stocking rate on cattle performance, quality and quantity of corn residue, and impact of residue removal on grain yield for 5 yr at the University of Nebraska - Lincoln West Central Water Resources Field Laboratory near Brule, NE. Four removal treatments-1) no removal (control), 2) grazing at 2.5 animal unit month (AUM)/ha, 3) grazing at 5.0 AUM/ha, and 4) baling-were applied to a center pivot-irrigated corn field (53 ha). The field was divided into eight 6.6-ha paddocks to which replicated treatments were assigned. Samples of residue were collected in October and March (before and after residue removal) using ten 0.5-m quadrats per treatment replication. Residue was separated into 5 plant parts-stem, cob, leaf, husk, and grain-and analyzed for nutrient content. Esophageally fistulated cattle were used to measure diet quality. Cattle assigned to the 2.5 AUM/ha stocking rate treatment gained more BW ( < 0.01) and BCS ( < 0.01) than cattle assigned to the 5.0 AUM/ha treatment. Leaf contained the most ( < 0.01) CP and husk had the greatest ( < 0.01) in vitro OM disappearance (IVOMD) but the CP and IVOMD of individual plant parts did not differ ( > 0.69) between sampling dates. Amount of total residue was reduced ( < 0.05) by baling and both grazing treatments between October and March but was not different ( > 0.05) in control paddocks between sampling dates. As a proportion of the total residue, stem increased ( < 0.01) and husk decreased ( < 0.01) between October and March. Diet CP content was similar ( = 0.10) between sampling dates for the 2 grazing treatments but IVOMD was greater after grazing in the 2.5 AUM/ha grazing treatment ( = 0.04). Subsequent grain yields were not different ( = 0.16) across all 4 residue removal treatments. At the proper stocking rate, corn residue grazing results in acceptable animal performance without negatively impacting subsequent corn grain production.


Subject(s)
Agriculture/methods , Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Zea mays , Animal Nutritional Physiological Phenomena , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...