Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Biomed Mater Res B Appl Biomater ; 111(8): 1523-1532, 2023 08.
Article in English | MEDLINE | ID: mdl-36959715

ABSTRACT

Frictional properties of cartilage resurfacing implants should be sufficiently low to limit damaging of the opposing cartilage during articulation. The present study determines if native lubricious molecule proteoglycan 4 (PRG4) can adsorb onto a layer-by-layer bioinspired coating composed of poly-l-lysine (PLL) and dopamine modified hyaluronic acid (HADN) and thereby can reduce the friction between implant and articular cartilage. An ELISA was developed to quantify the amount of immobilized human recombinant (rh)PRG4 after exposure to the PLL-HADN coating. The effect on lubrication was evaluated by comparing the coefficient of friction (CoF) of bare polycaprolactone (PCL) disks to that of PLL-HADN coated PCL disks while articulated against cartilage using a ring-on-disk geometry and a lubricant solution consisting of native synovial fluid components including rhPRG4. The PLL-HADN coating effectively immobilized rhPRG4. The surface roughness of PCL disks significantly increased while the water contact angle significantly decreased after application of the coating. The average CoF measured during the first minute of bare PCL against cartilage exceeded twice the CoF of the PLL-HADN coated PCL against cartilage. After 60 min, the CoF reached equilibrium values which were still significantly higher for bare PCL compared to coated PCL. The present study demonstrated that PCL can effectively be coated with PLL-HADN. Additionally, this coating reduces the friction between PCL and cartilage when a PRG4-rich lubricant is used, similar to the lubricating surface of native cartilage. This makes PLL-HADN coating a promising application to improve the clinical success of PCL-based cartilage resurfacing implants.


Subject(s)
Cartilage, Articular , Hyaluronic Acid , Humans , Hyaluronic Acid/pharmacology , Proteoglycans , Dopamine , Polylysine/pharmacology , Friction , Lubricants
2.
J Mech Behav Biomed Mater ; 126: 105010, 2022 02.
Article in English | MEDLINE | ID: mdl-34896765

ABSTRACT

A ruptured anterior cruciate ligament (ACL) is often reconstructed with a multiple-strand autograft of a semitendinosus tendon alone or combined with a gracilis tendon. Up to 10% of patients experience graft rupture. This potentially results from excessive local tissue strains under physiological loading which could either result in direct mechanical failure of the graft or induce mechanobiological weakening. Since the original location in the hamstring tendon cannot be traced back from an autograft rupture site, this study explored whether clinical outcome could be further improved by avoiding specific locations or regions of human semitendinosus and/or gracilis tendons in ACL grafts due to potential mechanical or biochemical inferiority. Additionally, it examined numerically which clinically relevant graft configurations experience the lowest strains - and therefore the lowest rupture risk - when loaded with equal force. Remnant full-length gracilis tendons from human ACL reconstructions and full-length semitendinosus- and ipsilateral gracilis tendons of human cadaveric specimens were subjected to a stress-relaxation test. Locations at high risk of mechanical failure were identified using particle tracking to calculate local axial strains. As biochemical properties, the water-, collagen-, glycosaminoglycan- and DNA content per tissue region (representing graft strands) were determined. A viscoelastic lumped parameter model per tendon region was calculated. These models were applied in clinically relevant virtual graft configurations, which were exposed to physiological loading. Configurations that provided lower stiffness - i.e., experiencing higher strains under equal force - were assumed to be at higher risk of failure. Suitability of the gracilis tendon proper to replace semitendinosus muscle-tendon junction strands was examined. Deviations in local axial strains from the globally applied strain were of similar magnitude as the applied strain. Locations of maximum strains were uniformly distributed over tendon lengths. Biochemical compositions varied between tissue regions, but no trends were detected. Viscoelastic parameters were not significantly different between regions within a tendon, although semitendinosus tendons were stiffer than gracilis tendons. Virtual grafts with a full-length semitendinosus tendon alone or combined with a gracilis tendon displayed the lowest strains, whereas strains increased when gracilis tendon strands were tested for their suitability to replace semitendinosus muscle-tendon junction strands. Locations experiencing high local axial strains - which could increase risk of rupture - were present, but no specific region within any of the investigated graft configurations was found to be mechanically or biochemically deviant. Consequently, no specific tendon region could be indicated to provide a higher risk of rupture for mechanical or biochemical reasons. The semitendinosus tendon provided superior stiffness to a graft compared to the gracilis tendon. Therefore, based on our results it would be recommended to use the semitendinosus tendon, and use the gracilis tendon in cases where further reinforcement of the graft is needed to attain the desired length and cross-sectional area. All these data support current clinical standards.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Hamstring Muscles , Hamstring Tendons , Autografts , Hamstring Muscles/surgery , Humans , Tendons
3.
Osteoarthritis Cartilage ; 29(7): 1071-1080, 2021 07.
Article in English | MEDLINE | ID: mdl-33848681

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a chronic joint disease characterized by progressive degradation of cartilage. It affects more than 10% of the people aged over 60 years-old worldwide with a rising prevalence due to the increasingly aging population. OA is a major source of pain, disability, and socioeconomic cost. Currently, the lack of effective diagnosis and affordable imaging options for early detection and monitoring of OA presents the clinic with many challenges. Spectroscopic Photoacoustic (sPA) imaging has the potential to reveal changes in cartilage composition with different degrees of damage, based on optical absorption contrast. DESIGN: In this study, the capabilities of sPA imaging and its potential to characterize cartilage damage were explored. To this end, 15 pieces of cartilage samples from patients undergoing a total joint replacement were collected and were imaged ex vivo with sPA imaging at a wide optical spectral range (between 500 nm and 1,300 nm) to investigate the photoacoustic properties of cartilage tissue. All the PA spectra of the cartilage samples were analyzed and compared to the corresponding histological results. RESULTS: The collagen related PA spectral changes were clearly visible in our imaging data and were related to different degrees of cartilage damage. The results are in good agreement with histology and the current gold standard, i.e., the Mankin score. CONCLUSIONS: This study demonstrates the potential and possible clinical application of sPA imaging in OA.


Subject(s)
Cartilage, Articular/pathology , Photoacoustic Techniques , Spectrum Analysis , Aged , Aged, 80 and over , Arthroplasty, Replacement, Knee , Female , Humans , Knee Joint/pathology , Male , Middle Aged
4.
Osteoarthritis Cartilage ; 29(6): 894-904, 2021 06.
Article in English | MEDLINE | ID: mdl-33647390

ABSTRACT

OBJECTIVE: The clinical success of focal metallic resurfacing implants depends largely on the friction between implant and opposing cartilage. Therefore, the present study determines the lubricating ability of the synovial fluid components hyaluronic acid (HA), proteoglycan 4 (PRG4) and a surface-active phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), on the articulation between cartilage and a Cobalt Chromium Molybdenum (CoCrMo) implant surface, compared with two cartilage surfaces. METHODS: A ring-on-disk geometry was used to perform repeated friction measurements at physiologically relevant velocities (6 and 60 mm/s) using lubricants with an increasing number of components present. Shear measurements were performed in order to evaluate the viscosity. To ensure that it is clinically relevant to explore the effect of these components, the presence of PRG4 in synovial fluid obtained from primary and revision knee and hip implant surgeries was examined. RESULTS: PRG4 in the presence of HA was found to significantly reduce the coefficient of friction for both cartilage-cartilage and cartilage-CoCrMo interface. This is relevant, as it was also demonstrated that PRG4 is still present at the time of revision surgeries. The addition of POPC had no effect for either configurations. HA increased the viscosity of the lubricating fluid by one order of magnitude, while PRG4 and POPC had no effect. CONCLUSION: The present study demonstrates the importance of selecting the appropriate lubrication solution to evaluate implant materials with biotribology tests. Because PRG4 is a key component for reducing friction between cartilage and an opposing surface, developing coatings which bind PRG4 is recommended for cartilage resurfacing implants.


Subject(s)
Cartilage, Articular/physiology , Friction , Hip Prosthesis , Knee Prosthesis , Proteoglycans/analysis , Proteoglycans/physiology , Synovial Fluid/chemistry , Animals , Biomechanical Phenomena , Cattle
5.
Clin Biomech (Bristol, Avon) ; 79: 105052, 2020 10.
Article in English | MEDLINE | ID: mdl-32591239

ABSTRACT

BACKGROUND: Non-degradable resurfacing implants are being developed for treatment of focal cartilage defects. Performance of these implants has been investigated opposing intact cartilage. This study investigates whether implants would perform equally well when the opposing cartilage is fibrillated. METHODS: Human osteochondral strips (~2x1x1 cm) with a smooth (n = 9) or fibrillated (n = 17) cartilage surface were obtained from human tibial plateaus excised during total knee arthroscopy. A custom-made pin-on-plate sliding indenter was used to apply simultaneous compression (0.75-3 MPa) and movement (4 mm/s over 6 mm). Either metal implants, polycarbonate-urethane or healthy porcine osteochondral plugs with a diameter of 6 mm were used as indenter. FINDINGS: Cartilage roughness of the osteochondral strips was significantly higher for the fibrillated than the smooth group prior to sliding-indentation. Roughness of the indenters was not significantly altered by sliding indentation using either smooth or fibrillated cartilage. For all but one sample, sliding of smooth cartilage against any of the indenter surfaces did not cause damage. However, samples with fibrillated cartilage showed varied responses from seemingly unaffected to severe tissue wear as quantified by analysis of Indian ink staining and histology. INTERPRETATION: This study demonstrates that the opposing cartilage quality is relevant for the clinical success of implanting an artificial implant in a focal cartilage defect. Therefore it is essential to test the efficacy of newly developed implants against arthritic joint surfaces, and care should be taken when interpreting in vivo studies in which implants are inserted in healthy joints.


Subject(s)
Cartilage, Articular/pathology , Prostheses and Implants , Animals , Metals , Swine , Tibia/pathology
6.
Biomed Microdevices ; 21(4): 101, 2019 11 23.
Article in English | MEDLINE | ID: mdl-31760501

ABSTRACT

E-cadherin is a cell-cell adhesion protein that plays a prominent role in cancer invasion. Inactivation of E-cadherin in breast cancer can arise from gene promoter hypermethylation or genetic mutation. Depending on their E-cadherin status, breast cancer cells adopt different morphologies with distinct invasion modes. The tumor microenvironment (TME) can also affect the cell morphology and invasion mode. In this paper, we used a previously developed microfluidic system to quantify the three-dimensional invasion of breast cancer cells with different E-cadherin status, namely MCF-7, CAMA-1 and MDA-MB-231 with wild type, mutated and promoter hypermethylated E-cadherin, respectively. The cells migrated into a stable and reproducible microfibrous polycaprolactone mesh in the chip under a programmed stable chemotactic gradient. We observed that the MDA-MB-231 cells invaded the most, as single cells. MCF-7 cells collectively invaded into the matrix more than CAMA-1 cells, maintaining their E-cadherin expression. The CAMA-1 cells exhibited multicellular multifocal infiltration into the matrix. These results are consistent with what is seen in vivo in the cancer biology literature. In addition, comparison between complete serum and serum gradient conditions showed that the MDA-MB-231 cells invaded more under the serum gradient after one day, however this behavior was inverted after 3 days. The results showcase that the microfluidic system can be used to quantitatively assess the invasion behavior of cancer cells with different E-cadherin expression, for a longer period than conventional invasion models. In the future, it can be used to quantitatively investigate effects of matrix structure and cell treatments on cancer invasion.


Subject(s)
Breast Neoplasms/pathology , Cadherins/metabolism , Cytological Techniques/instrumentation , Lab-On-A-Chip Devices , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness
7.
Clin Biomech (Bristol, Avon) ; 50: 40-46, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28987870

ABSTRACT

The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage.


Subject(s)
Cartilage Diseases/physiopathology , Cartilage, Articular/physiopathology , Collagen/physiology , Sprains and Strains/physiopathology , Biomechanical Phenomena , Elastic Modulus , Finite Element Analysis , Humans , Models, Biological , Stress, Mechanical , Tensile Strength
8.
Biomech Model Mechanobiol ; 16(1): 263-273, 2017 02.
Article in English | MEDLINE | ID: mdl-27514541

ABSTRACT

Experimental reports suggest that cartilage damage depends on strain magnitude. Additionally, because of its poro-viscoelastic nature, strain magnitude in cartilage can depend on strain rate. The present study explores whether cartilage damage may develop dependent on strain rate, even when the presented damage numerical model is strain-dependent but not strain-rate-dependent. So far no experiments have been distinguished whether rate-dependent cartilage damage occurs in the collagen or in the non-fibrillar network. Thus, this research presents a finite element analysis model where, among others, collagen and non-fibrillar matrix are incorporated as well as a strain-dependent damage mechanism for these components. Collagen and non-fibrillar matrix stiffness decrease when a given strain is reached until complete failure upon reaching a maximum strain. With such model, indentation experiments at increasing strain rates were simulated on cartilage plugs and damage development was monitored over time. Collagen damage increased with increasing strain rate from 21 to 42 %. In contrast, damage in the non-fibrillar matrix decreased with increasing strain rates from 72 to 34 %. Damage started to develop at a depth of approximately 20 % of the sample height, and this was more pronounced for the slow and modest loading rates. However, the most severe damage at the end of the compression step occurred at the surface for the plugs subjected to 120 mm/min strain rate. In conclusion, the present study confirms that the location and magnitude of damage in cartilage may be strongly dependent on strain rate, even when damage occurs solely through a strain-dependent damage mechanism.


Subject(s)
Cartilage, Articular/injuries , Models, Biological , Stress, Mechanical , Biomechanical Phenomena , Cartilage, Articular/pathology , Collagen/metabolism , Finite Element Analysis
9.
Biomech Model Mechanobiol ; 16(1): 151-158, 2017 02.
Article in English | MEDLINE | ID: mdl-27416853

ABSTRACT

Cartilage is considered a biphasic material in which the solid is composed of proteoglycans and collagen. In biphasic tissue, the hydraulic pressure is believed to bear most of the load under higher strain rates and its dissipation due to fluid flow determines creep and relaxation behavior. In equilibrium, hydraulic pressure is zero and load bearing is transferred to the solid matrix. The viscoelasticity of the collagen network also contributes to its time-dependent behavior, and the osmotic pressure to load bearing in equilibrium. The aim of the present study was to determine the relative contributions of hydraulic pressure, viscoelastic collagen stress, solid matrix stiffness and osmotic pressure to load carriage in cartilage under transient and equilibrium conditions. Unconfined compression experiments were simulated using a fibril-reinforced poroviscoelastic model of articular cartilage, including water, fibrillar viscoelastic collagen and non-fibrillar charged glycosaminoglycans. The relative contributions of hydraulic and osmotic pressures and stresses in the fibrillar and non-fibrillar network were evaluated in the superficial, middle and deep zone of cartilage under five different strain rates and after relaxation. Initially upon loading, the hydraulic pressure carried most of the load in all three zones. The osmotic swelling pressure carried most of the equilibrium load. In the surface zone, where the fibers were loaded in tension, the collagen network carried 20 % of the load for all strain rates. The importance of these fibers was illustrated by artificially modifying the fiber architecture, which reduced the overall stiffness of cartilage in all conditions. In conclusion, although hydraulic pressure dominates the transient behavior during cartilage loading, due to its viscoelastic nature the superficial zone collagen fibers carry a substantial part of the load under transient conditions. This becomes increasingly important with higher strain rates. The interesting and striking new insight from this study suggests that under equilibrium conditions, the swelling pressure generated by the combination of proteoglycans and collagen reinforcement accounts cartilage stiffness for more than 90 % of the loads carried by articular cartilage. This finding is different from the common thought that load is transferred from fluid to solid and is carried by the aggregate modulus of the solid. Rather, it is transformed from hydraulic to osmotic swelling pressure. These results show the importance of considering both (viscoelastic) collagen fibers as well as swelling pressure in studies of the (transient) mechanical behavior of cartilage.


Subject(s)
Cartilage, Articular/metabolism , Models, Biological , Stress, Mechanical , Elasticity , Humans , Viscosity
10.
J Biomech ; 48(8): 1371-6, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25835788

ABSTRACT

The chondroprotective success of meniscal transplantation is variable. Poorly controlled factors such as a geometrical mismatch of the implant may be partly responsible. Clinical data, animal studies and cadaver experiments suggest that smaller transplants perform better than oversized, but clear evidence is lacking. The hypothesis of this study is that smaller menisci outperform larger ones because they distribute stresses more effectively at those particular locations that receive the highest loads. Consequently, collagen in the adjacent cartilage is protected from damage due to overstraining. Experimentally it is not possible to measure load distribution and collagen strain inside articular cartilage (AC). Therefore, a numerical model was used to determine the mechanical conditions throughout the depth of the AC. Meniscus implants with different sizes and mechanical properties were evaluated. These were compared with healthy and with meniscectomized joints. To account for the time-dependent behavior 600s of loading was simulated; results were visualized after 1s and 600s. Simulations showed that AC's strains strongly depended on implant size and loading duration. They depended less on the stiffness of the implant material. With an oversized implant, collagen strains were particularly large in the femoral AC initially and further increased upon sustained loading. The severest compressive strains occurred after sustained loading in the meniscectomized joint. Strains with an undersized meniscus were comparable to a perfectly sized implant. In conclusion, these results support the hypothesis that an undersized implant may outperform an oversized one because it distributes stresses better in the most intensely loaded joint area.


Subject(s)
Knee Prosthesis , Animals , Biomechanical Phenomena , Cartilage, Articular/physiopathology , Cartilage, Articular/surgery , Collagen/physiology , Computer Simulation , Humans , Menisci, Tibial/physiopathology , Menisci, Tibial/surgery , Models, Biological , Stress, Mechanical
11.
J Biomech ; 48(5): 823-31, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25560271

ABSTRACT

Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.


Subject(s)
Collagen/physiology , Models, Theoretical , Adaptation, Physiological , Finite Element Analysis , Gels , Tissue Engineering
12.
J Mech Behav Biomed Mater ; 38: 242-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24747014

ABSTRACT

The depth-dependent matrix composition of articular cartilage is important for its mechanical behavior. It is unknown whether the depth-dependent matrix composition of a meniscus is similarly important for its load-bearing function. The present objective was to determine whether it is necessary to account for the native distribution of matrix components in the cross-sectional plane of the meniscus, when studying its mechanical behavior in numerical models. To address this objective, measured depth-dependent distribution of matrix contents in the human meniscus, and fitted visco-elastic mechanical properties of the collagen were used as input in FEA simulations of a knee joint. The importance of including the depth-dependent matrix component constitution in the meniscus was determined by comparing simulations with an axisymmetric representation of the knee joint, which incorporated either the depth-dependent matrix composition or homogenized matrix. Depth-dependent differences in water, collagen and proteoglycan contents were observed, but these were not significantly different. The anterior region, with significantly higher collagen content, was statistically stiffer than the posterior region. However, depth wise, stiffness did not correlate to the constitution of the tissue. GAG content was significantly higher in the posterior than in the anterior region. Visco-elastic properties of meniscus collagen were fitted against tensile test data. Simulations show that the distribution of stresses and strains in the cartilage is slightly low when the meniscus contains a depth-dependent constitution, but this difference is only modest. Therefore, this study suggests that knee joint mechanics is rather insensitive to the distribution of constitutive components in the cross section of the meniscus, and that the depth-dependent matrix distribution of the meniscus is not essential to be included in axisymmetric computational models of the knee joint.


Subject(s)
Finite Element Analysis , Menisci, Tibial/metabolism , Cartilage/metabolism , Collagen/metabolism , Glycosaminoglycans/metabolism , Humans , Stress, Mechanical
13.
J Biomech ; 47(9): 2149-56, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24182772

ABSTRACT

Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.


Subject(s)
Cartilage, Articular/physiology , Models, Biological , Regeneration , Sepharose , Tissue Scaffolds , Biocompatible Materials , Chondrocytes/physiology , Magnetic Resonance Imaging , Stress, Mechanical , Tissue Engineering
14.
Osteoarthritis Cartilage ; 22(1): 95-103, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24185112

ABSTRACT

OBJECTIVE: Proteoglycan (PG) loss and surface roughening, early signs of osteoarthritis (OA), are likely preceded by softening of the ground substance and the collagen network. Insight in their relative importance to progression of OA may assist the development of treatment strategies for early OA. To support interpretation of experimental data, a numerical model is proposed that can predict damage progression in cartilage over time, as a consequence of excessive mechanical loading. The objective is to assess the interaction between ground substance softening and collagen fiber damage using this model. DESIGN: An established cartilage mechanics model is extended with the assumption that excessive strains may damage the ground substance or the collagen network, resulting in softening of the overstrained constituent. During subsequent loading cycles the strain may or may not cross a threshold, resulting in damage to stabilize or to progress. To evaluate how softening of the ground substance and collagen may interact, damage progression is computed when either one of them, or both together are allowed to occur during stepwise increased loading. RESULTS: Softening in the ground substance was predicted to localize in the superficial and transitional zone and resulted in cartilage softening. Collagen damage was most prominent in the superficial zone, with more diffuse damage penetrating deeper into the tissue, resulting in adverse strain gradients. Effects were more pronounced if both constituents developed damage in parallel. CONCLUSION: Ground substance softening and collagen damage have distinct effects on cartilage mechanopathology, and damage in either one of them may promote each other.


Subject(s)
Cartilage, Articular/injuries , Models, Biological , Osteoarthritis/physiopathology , Algorithms , Biomechanical Phenomena , Cartilage, Articular/chemistry , Cartilage, Articular/physiopathology , Disease Progression , Fibrillar Collagens/chemistry , Humans , Osteoarthritis/metabolism , Proteoglycans/physiology , Stress, Mechanical , Weight-Bearing/physiology
15.
Osteoarthritis Cartilage ; 21(1): 136-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23010079

ABSTRACT

OBJECTIVE: Because collagen damage and cartilage softening have not yet been determined simultaneously in one study for the very early onset of osteoarthritis (OA), it remains questionable whether they are associated. The aim of the present study is therefore to evaluate whether indeed, initial collagen damage can be found when tissue softening occurs as a result of excessive mechanical loading. METHODS: To investigate this aim, a series of specific indentation loading protocols were designed to induce and monitor cartilage softening in osteochondral explants of bovine carpometacarpal joints. The experiment contained one control group (n = 6) in which no damage was induced and four experimental groups in which samples received either a constant load of 3 (n = 5), 6 (n = 5) or 15 N (n = 6), or an increasing load (n = 7) from 2 to 13 N in 11 steps. Moreover, to determine mechanically induced collagen damage, Col2-3/4M (cumulative collagen damage) and Col2-3/4C(short) (only enzymatic damage) staining were compared. RESULTS: The normalized peak and equilibrium reaction forces decreased in the groups that received increasing and 15 N peak loading. However, Col2-3/4M staining was negative in all samples, while enzymatic damage (Col2-3/4C(short)) appeared similar in experiments and in unloaded control groups. CONCLUSION: It was shown that a loading magnitude threshold exists above which softening occurs in cartilage. However, in samples that did show softening, we were unable to detect collagen damage. Thus, our results demonstrate that cartilage softening most likely precedes collagen damage.


Subject(s)
Carpus, Animal/pathology , Cartilage, Articular/pathology , Collagen/metabolism , Animals , Cartilage, Articular/injuries , Case-Control Studies , Cattle , Glycosaminoglycans/analysis , Stress, Mechanical
16.
Osteoarthritis Cartilage ; 21(2): 331-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23142725

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is characterized by loss of cartilage and alterations in subchondral bone architecture. Changes in cartilage and bone tissue occur simultaneously and are spatially correlated, indicating that they are probably related. We investigated two hypotheses regarding this relationship. According to the first hypothesis, both wear and tear changes in cartilage, and remodeling changes in bone are a result of abnormal loading conditions. According to the second hypothesis, loss of cartilage and changes in bone architecture result from endochondral ossification. DESIGN: With an established bone adaptation model, we simulated adaptation to high load and endochondral ossification, and investigated whether alterations in bone architecture between these conditions were different. In addition, we analyzed bone structure differences between human bone samples with increasing degrees of OA, and compared these data to the simulation results. RESULTS: The simulation of endochondral ossification led to a more refined structure, with a higher number of trabeculae in agreement with the finding of a higher trabecular number in osteochondral plugs with severe OA. Furthermore, endochondral ossification could explain the presence of a "double subchondral plate" which we found in some human bone samples. However, endochondral ossification could not explain the increase in bone volume fraction that we observed, whereas adaptation to high loading could. CONCLUSION: Based on the simulation and experimental data, we postulate that both endochondral ossification and adaptation to high load may contribute to OA bone structural changes, while both wear and tear and the replacement of mineralized cartilage with bone tissue may contribute cartilage thinning.


Subject(s)
Adaptation, Physiological/physiology , Bone and Bones/pathology , Cartilage/pathology , Models, Biological , Osteoarthritis/pathology , Osteogenesis/physiology , Bone Remodeling/physiology , Chondrocytes/pathology , Finite Element Analysis , Humans , Ossification, Heterotopic/pathology , Weight-Bearing/physiology
17.
Ann Biomed Eng ; 40(11): 2456-74, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22648577

ABSTRACT

Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes.


Subject(s)
Cartilage/physiology , Models, Biological , Animals , Biomechanical Phenomena , Humans , Joints/physiology , Muscle, Skeletal/physiology
18.
Bone ; 50(5): 1152-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22342798

ABSTRACT

For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well. The mechanisms behind the bone changes are subject of debate, and a better understanding may help in the development of bone-targeting OA therapies. In the literature, the increase in bone volume fraction has been hypothesized to result from mechanoregulated bone adaptation in response to decreased mineralization. Furthermore, both changes in bone volume fraction and mineralization have been reported to be highest close to the cartilage, and bone volume fraction has been reported to be correlated with cartilage degeneration. These data indicate that cartilage degeneration, bone volume fraction, and bone matrix mineralization may be related in OA. In the current study, we aimed to investigate the relationships between cartilage degeneration, bone matrix mineralization and bone volume fraction at a local level. With microCT, we determined bone matrix mineralization and bone volume fraction as a function of distance from the cartilage in osteochondral plugs from human OA tibia plateaus with varying degrees of cartilage degeneration. In addition, we evaluated whether mechanoregulated bone adaptation in response to decreased bone matrix mineralization may be responsible for the increase in bone volume fraction observed in OA. For this purpose, we used the experimentally obtained mineralization data as input for bone adaptation simulations. We simulated the effect of mechanoregulated bone adaptation in response to different degrees of mineralization, and compared the simulation results to the experimental data. We found that local changes in subchondral bone mineralization and bone volume fraction only occurred underneath severely degenerated cartilage, indicating that bone mineralization and volume fraction are related to cartilage degeneration at a local level. In addition, both the experimental data and the simulations indicated that a depth-dependent increase in bone volume fraction could be caused by decreased bone matrix mineralization. However, a quantitative comparison showed that decreased mineralization can only explain part of the subchondral sclerosis observed in OA.


Subject(s)
Bone and Bones/pathology , Bone and Bones/physiopathology , Calcification, Physiologic/physiology , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Adaptation, Physiological , Aged , Bone Matrix/diagnostic imaging , Bone Matrix/pathology , Bone Matrix/physiopathology , Bone and Bones/diagnostic imaging , Cartilage/diagnostic imaging , Cartilage/pathology , Cartilage/physiopathology , Computer Simulation , Humans , Middle Aged , Models, Biological , Organ Size , Osteoarthritis/diagnostic imaging , Sclerosis , Tomography, X-Ray Computed , Wound Healing
19.
Biomech Model Mechanobiol ; 11(5): 655-64, 2012 May.
Article in English | MEDLINE | ID: mdl-21847614

ABSTRACT

Chondrocyte hypertrophy is a characteristic of osteoarthritis and dominates bone growth. Intra- and extracellular changes that are known to be induced by metabolically active hypertrophic chondrocytes are known to contribute to hypertrophy. However, it is unknown to which extent these mechanical conditions together can be held responsible for the total magnitude of hypertrophy. The present paper aims to provide a quantitative, mechanically sound answer to that question. To address this aim requires a quantitative tool that captures the mechanical effects of collagen and proteoglycans, allows temporal changes in tissue composition, and can compute cell and tissue deformations. These requirements are met in our numerical model that is validated for articular cartilage mechanics, which we apply to quantitatively explain a range of experimental observations related to hypertrophy. After validating the numerical approach for studying hypertrophy, the model is applied to evaluate the direct mechanical effects of axial tension and compression on hypertrophy (Hueter-Volkmann principle) and to explore why hypertrophy is reduced in case of partially or fully compromised proteoglycan expression. Finally, a mechanical explanation is provided for the observation that chondrocytes do not hypertrophy when enzymatical collagen degradation is prohibited (S1Pcko knock-out mouse model). This paper shows that matrix turnover by metabolically active chondrocytes, together with externally applied mechanical conditions, can explain quantitatively the volumetric change of chondrocytes during hypertrophy. It provides a mechanistic explanation for the observation that collagen degradation results in chondrocyte hypertrophy, both under physiological and pathological conditions.


Subject(s)
Chondrocytes/pathology , Animals , Chondrocytes/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Finite Element Analysis , Hypertrophy , Mice
20.
Bone ; 49(4): 762-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21742072

ABSTRACT

Pressurized fluid has been proposed to play an important role in subchondral bone cyst development. However, the exact mechanism remains speculative. We used an established computational mechanoregulated bone adaptation model to investigate two hypotheses: 1) pressurized fluid causes cyst growth through altered bone tissue loading conditions, 2) pressurized fluid causes cyst growth through osteocyte death. In a 2D finite element model of bone microarchitecture, a marrow cavity was filled with fluid to resemble a cyst. Subsequently, the fluid was pressurized, or osteocyte death was simulated, or both. Rather than increasing the load, which was the prevailing hypothesis, pressurized fluid decreased the load on the surrounding bone, thereby leading to net bone resorption and growth of the cavity. In this scenario an irregularly shaped cavity developed which became rounded and obtained a rim of sclerotic bone after removal of the pressurized fluid. This indicates that cyst development may occur in a step-wise manner. In the simulations of osteocyte death, cavity growth also occurred, and the cavity immediately obtained a rounded shape and a sclerotic rim. Combining both mechanisms increased the growth rate of the cavity. In conclusion, both stress-shielding by pressurized fluid, and osteocyte death may cause cyst growth. In vivo observations of pressurized cyst fluid, dead osteocytes, and different appearances of cysts similar to our simulation results support the idea that both mechanisms can simultaneously play a role in the development and growth of subchondral bone cysts.


Subject(s)
Body Fluids/physiology , Bone Cysts/pathology , Bone and Bones/pathology , Pressure , Biomechanical Phenomena , Bone Cysts/physiopathology , Bone Remodeling/physiology , Bone and Bones/physiopathology , Cell Death , Cyst Fluid , Humans , Models, Biological , Osteocytes/pathology , Talus/pathology , Talus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...