Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 18(8): 1241-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21494263

ABSTRACT

Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.


Subject(s)
Cell Death/physiology , Plant Cells , Plant Physiological Phenomena , Animals , Plants/metabolism , Vacuoles/metabolism
2.
Plant Mol Biol ; 53(6): 845-63, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15082930

ABSTRACT

We investigated changes in gene expression in Iris hollandica flowers by microarray technology. Flag tepals were sampled daily, from three days prior to flower opening to the onset of visible senescence symptoms. Gene expression profiles were compared with biochemical data including lipid and protein degradation and DNA coiling, and with morphological data. Plasmodesmata of mesophyll cells closed about two days before flower opening, while in the epidermis they closed concomitant with opening. Similarly, the onset of visible senescence in the epidermis cells occurred about two days later than in the mesophyll. About 1400 PCR-amplified clones, derived from a subtractive cDNA library enriched for tepal-specific genes, were spotted and about 240 clones, including 200 that were expressed most differentially, were sequenced. The expression patterns showed three main clusters. One exhibited high expression during tepal growth (cluster A). These genes were putatively associated with pigmentation, cell wall synthesis and metabolism of lipids and proteins. The second cluster (B) was highly expressed during flower opening. The third cluster (C) related to the final stages of senescence, with genes putatively involved in signal transduction, and the remobilization of phospholipids, proteins, and cell wall compounds. Throughout the sampling period, numerous plant defence genes were highly expressed. We identified an ion channel protein putatively involved in senescence, and some putative regulators of transcription and translation, including a MADS-domain factor.


Subject(s)
Flowers/genetics , Gene Expression Profiling , Magnoliopsida/genetics , Blotting, Northern , Cluster Analysis , DNA, Complementary/chemistry , DNA, Complementary/genetics , Flowers/growth & development , Flowers/ultrastructure , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Library , Magnoliopsida/growth & development , Microscopy, Electron, Scanning , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...