Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 65(9): 2681-91, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21884064

ABSTRACT

Although natural populations may evolve resistance to anthropogenic stressors such as pollutants, this evolved resistance may carry costs. Using an experimental evolution approach, we exposed different Daphnia magna populations in outdoor containers to the carbamate pesticide carbaryl and control conditions, and assessed the resulting populations for both their resistance to carbaryl as well as their susceptibility to infection by the widespread bacterial microparasite Pasteuria ramosa. Our results show that carbaryl selection led to rapid evolution of carbaryl resistance with seemingly no cost when assessed in a benign environment. However, carbaryl-resistant populations were more susceptible to parasite infection than control populations. Exposure to both stressors reveals a synergistic effect on sterilization rate by P. ramosa, but this synergism did not evolve under pesticide selection. Assessing costs of rapid adaptive evolution to anthropogenic stress in a semi-natural context may be crucial to avoid too optimistic predictions for the fitness of the evolving populations.


Subject(s)
Daphnia/genetics , Daphnia/microbiology , Host-Pathogen Interactions , Animals , Belgium , Biological Evolution , Carbaryl/toxicity , Daphnia/drug effects , Female , Genetic Variation , Insecticides/toxicity , Pasteuria/physiology , Selection, Genetic
2.
Integr Comp Biol ; 51(5): 703-18, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21775388

ABSTRACT

Genetic adaptation to temperature change can impact responses of populations and communities to global warming. Here we integrate previously published results on experimental evolution trials with follow-up experiments involving the water flea Daphnia as a model system. Our research shows (1) the capacity of natural populations of this species to genetically adapt to changes in temperature in a time span of months to years, (2) the context-dependence of these genetic changes, emphasizing the role of ecology and community composition on evolutionary responses to climatic change, and (3) the impact of micro-evolutionary changes on immigration success of preadapted genotypes. Our study involves (1) experimental evolution trials in the absence and presence of the community of competitors, predators, and parasites, (2) life-table and competition experiments to assess the fitness consequences of micro-evolution, and (3) competition experiments with putative immigrant genotypes. We use these observations as building blocks of an evolving metacommunity to understand biological responses to climatic change. This approach integrates both local and regional responses at both the population and community levels. Finally, we provide an outline of current gaps in knowledge and suggest fruitful avenues for future research.


Subject(s)
Adaptation, Biological , Daphnia/genetics , Genetic Variation , Temperature , Animal Migration , Animals , Biological Evolution , Biota , Daphnia/physiology , Ecosystem , Genotype , Global Warming , Life Tables , Models, Animal , Selection, Genetic , Species Specificity , Time Factors , Zygote/physiology
3.
Evolution ; 63(7): 1867-78, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19473405

ABSTRACT

Rising temperatures associated with global warming present a challenge to the fate of many aquatic organisms. Although rapid evolutionary response to temperature-mediated selection may allow local persistence of populations under global warming, and therefore is a key aspect of evolutionary biology, solid proof of its occurrence is rare. In this study, we tested for genetic adaptation to an increase in temperature in the water flea Daphnia magna, a keystone species in freshwater systems, by performing a thermal selection experiment under laboratory conditions followed by the quantification of microevolutionary responses to temperature for both life-history traits as well as for intraspecific competitive strength. After three months of selection, we found a microevolutionary response to temperature in performance, but only in one of two culling regimes, highlighting the importance of population dynamics in driving microevolutionary change within populations. Furthermore, there was an evolutionary increase in thermal plasticity in performance. The results of the competition experiment were in agreement with predictions based on performance as quantified in the life table experiment and illustrate that microevolution within a short time frame has the ability to influence the outcome of intraspecific competition.


Subject(s)
Acclimatization/genetics , Daphnia/genetics , Animals , Biological Evolution , Daphnia/physiology , Genotype , Greenhouse Effect , Population Dynamics , Selection, Genetic
4.
Ecology ; 87(4): 809-15, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16676523

ABSTRACT

The simultaneous presence of predators and a limited time for development imposes a conflict: accelerating growth under time constraints comes at the cost of higher predation risk mediated by increased foraging. The few studies that have addressed this tradeoff have dealt only with life history traits such as age and size at maturity. Physiological traits have largely been ignored in studies assessing the impact of environmental stressors, and it is largely unknown whether they respond independently of life history traits. Here, we studied the simultaneous effects of time constraints, i.e., as imposed by seasonality, and predation risk on immune defense, energy storage, and life history in lestid damselflies. As predicted by theory, larvae accelerated growth and development under time constraints while the opposite occurred under predation risk. The activity of phenoloxidase, an important component of insect immunity, and investment in fat storage were reduced both under time constraints and in the presence of predators. These reductions were smaller when time constraints and predation risk were combined. This indicates that predators can induce sublethal costs linked to both life history and physiology in their prey, and that time constraints can independently reduce the impact of predator-induced changes in life history and physiology.


Subject(s)
Insecta/physiology , Predatory Behavior , Animals , Insecta/immunology , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...