Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(2): 1858-1869, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28059494

ABSTRACT

The advent of three-dimensional (3D) finFET transistors and emergence of novel memory technologies place stringent requirements on the processing of silicon nitride (SiNx) films used for a variety of applications in device manufacturing. In many cases, a low temperature (<400 °C) deposition process is desired that yields high quality SiNx films that are etch resistant and also conformal when grown on 3D substrate topographies. In this work, we developed a novel plasma-enhanced atomic layer deposition (PEALD) process for SiNx using a mono-aminosilane precursor, di(sec-butylamino)silane (DSBAS, SiH3N(sBu)2), and N2 plasma. Material properties have been analyzed over a wide stage temperature range (100-500 °C) and compared with those obtained in our previous work for SiNx deposited using a bis-aminosilane precursor, bis(tert-butylamino)silane (BTBAS, SiH2(NHtBu)2), and N2 plasma. Dense films (∼3.1 g/cm3) with low C, O, and H contents at low substrate temperatures (<400 °C) were obtained on planar substrates for this process when compared to other processes reported in the literature. The developed process was also used for depositing SiNx films on high aspect ratio (4.5:1) 3D trench nanostructures to investigate film conformality and wet-etch resistance (in dilute hydrofluoric acid, HF/H2O = 1:100) relevant for state-of-the-art device architectures. Film conformality was below the desired levels of >95% and attributed to the combined role played by nitrogen plasma soft saturation, radical species recombination, and ion directionality during SiNx deposition on 3D substrates. Yet, very low wet-etch rates (WER ≤ 2 nm/min) were observed at the top, sidewall, and bottom trench regions of the most conformal film deposited at low substrate temperature (<400 °C), which confirmed that the process is applicable for depositing high quality SiNx films on both planar and 3D substrate topographies.

2.
J Phys Chem Lett ; 6(18): 3610-4, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26722730

ABSTRACT

There is an urgent need to deposit uniform, high-quality, conformal SiN(x) thin films at a low-temperature. Conforming to these constraints, we recently developed a plasma enhanced atomic layer deposition (ALD) process with bis(tertiary-butyl-amino)silane (BTBAS) as the silicon precursor. However, deposition of high quality SiNx thin films at reasonable growth rates occurs only when N2 plasma is used as the coreactant; strongly reduced growth rates are observed when other coreactants like NH3 plasma, or N2-H2 plasma are used. Experiments reported in this Letter reveal that NH(x)- or H- containing plasmas suppress film deposition by terminating reactive surface sites with H and NH(x) groups and inhibiting precursor adsorption. To understand the role of these surface groups on precursor adsorption, we carried out first-principles calculations of precursor adsorption on the ß-Si3N4(0001) surface with different surface terminations. They show that adsorption of the precursor is strong on surfaces with undercoordinated surface sites. In contrast, on surfaces with H, NH2 groups, or both, steric hindrance leads to weak precursor adsorption. Experimental and first-principles results together show that using an N2 plasma to generate reactive undercoordinated surface sites allows strong adsorption of the silicon precursor and, hence, is key to successful deposition of silicon nitride by ALD.

SELECTION OF CITATIONS
SEARCH DETAIL
...