Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 155: 108919, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31622845

ABSTRACT

The tissue- or water-equivalence of dosimetry phantoms used as substitutes for water is essential for absorbed dose measurements in radiotherapy. At our institution, a heterogeneous pelvic phantom that consists of stacked Nylon-12 layers has recently been manufactured for Gafchromic film dosimetry. However, data on the use of Nylon as tissue-mimicking media for dosimetric applications are scarce. This study characterizes the water-equivalence of Nylon-12 for dosimetric measurements in therapeutic photon and electron beams. Employing an Elekta Synergy and SL25 linear accelerator (Linac), photon beam transmission measurements for 6 MV and 15 MV, acquired in narrow beam geometry with a 0.6 cm3 Farmer-type ion chamber showed that the mass attenuation coefficient µm of Nylon-12 agrees with the values of water, water-equivalent RW3 and Perspex phantom materials within 3%. For 6 MV, the µm values were 0.0477 ±â€¯0.002 cm2/g, 0.0490 ±â€¯0.003 cm2/g, 0.0482 ±â€¯0.001 cm2/g and 0.0479 ±â€¯0.002cm2/g for Nylon-12, water, RW3, and Perspex, respectively. Differences within 2% were attained between depth dose data measured in Nylon-12 slabs with Gafchromic EBT3 films and in water with a Roos ion chamber for 10 × 10 cm2 6, 12 and 20 MeV electron beams produced by the Elekta Synergy and SL25 Linacs. Also, a good agreement within 2% was obtained between percent depth doses computed by DOSXYZnrc Monte Carlo simulations in water, Nylon-12 and RW3 materials for photon spectra between 250 kV and 15 MV. The discrepancies between the ratios of average, restricted stopping powers of Nylon to air and water to air for photon spectra ranging from 2 to 45 MV are typically within 1% signifying that Nylon and water have equivalent stopping power characteristics. This study highlights that Nylon-12 can be used as a tissue-mimicking phantom material for dosimetric measurements in clinical megavoltage photon and electron beams as it exhibits good water-equivalence.


Subject(s)
Nylons/chemistry , Phantoms, Imaging , Electrons , Humans , Photons , Water/chemistry
2.
Rep Pract Oncol Radiother ; 24(6): 614-623, 2019.
Article in English | MEDLINE | ID: mdl-31680779

ABSTRACT

AIM: In this study, the egs_cbct code's ability to replicate an electronic portal imaging device (EPID) is explored. BACKGROUND: We have investigated head and neck (H&N) setup verification on an Elekta Precise linear accelerator. It is equipped with an electronic portal imaging device (EPID) that can capture a set of projection images over different gantry angles. METHODS AND MATERIALS: Cone-beam computed tomography (CBCT) images were reconstructed from projection images of two different setup scenarios. Projections of an Anthropomorphic Rando head phantom were also simulated by using the egs_cbct Monte Carlo code for comparison with the measured projections.Afterwards, CBCT images were reconstructed from this data. Image quality was evaluated against a metric defined as the image acquisition interval (IAI). It determines the number of projection images to be used for CBCT image reconstruction. RESULTS: From this results it was established that phantom shifts could be determined within 2 mm and rotations within one degree accuracy using only 20 projection images (IAI = 10 degrees). Similar results were obtained with the simulated data. CONCLUSION: In this study it is demonstrated that a head and neck setup can be verified using substantially fewer projection images. Bony landmarks and air cavities could still be observed in the reconstructed Rando head phantom. The egs_cbct code can be used as a tool to investigate setup errors without tedious measurements with an EPID system.

SELECTION OF CITATIONS
SEARCH DETAIL
...