Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 120: 275-287, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815661

ABSTRACT

OBJECTIVE: Changes in microbial composition are observed in various psychiatric disorders, but their specificity to certain symptoms or processes remains unclear. This study explores the associations between the gut microbiota composition and the Research Domain Criteria (RDoC) domains of functioning, representing symptom domains, specifically focusing on stress-related and neurodevelopmental disorders in patients with and without psychiatric comorbidity. METHODS: The gut microbiota was analyzed in 369 participants, comprising 272 individuals diagnosed with a mood disorder, anxiety disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, and/or substance use disorder, as well as 97 psychiatrically unaffected individuals. The RDoC domains were estimated using principal component analysis (PCA) with oblique rotation on a range of psychiatric, psychological, and personality measures. Associations between the gut microbiota and the functional domains were assessed using multiple linear regression and permanova, adjusted for age, sex, diet, smoking, medication use and comorbidity status. RESULTS: Four functional domains, aligning with RDoC's negative valence, social processes, cognitive systems, and arousal/regulatory systems domains, were identified. Significant associations were found between these domains and eight microbial genera, including associations of negative valence with the abundance of the genera Sellimonas, CHKCI001, Clostridium sensu stricto 1, Oscillibacter, and Flavonifractor; social processes with Sellimonas; cognitive systems with Sporobacter and Hungatella; and arousal/regulatory systems with Ruminococcus torques (all pFDR < 0.05). CONCLUSION: Our findings demonstrate associations between the gut microbiota and the domains of functioning across patients and unaffected individuals, potentially mediated by immune-related processes. These results open avenues for microbiota-focused personalized interventions, considering psychiatric comorbidity. However, further research is warranted to establish causality and elucidate mechanistic pathways.

2.
Article in English | MEDLINE | ID: mdl-33082119

ABSTRACT

BACKGROUND: Prior work has proposed that major depressive disorder (MDD) is associated with a specific cognitive bias: patients with depression seem to learn more from punishment than from reward. This learning bias has been associated with blunting of reward-related neural responses in the striatum. A key question is whether negative learning bias is also present in patients with MDD and comorbid disorders and whether this bias is specific to depression or shared across disorders. METHODS: We employed a transdiagnostic approach assessing a heterogeneous group of (nonpsychotic) psychiatric patients from the MIND-Set (Measuring Integrated Novel Dimensions in Neurodevelopmental and Stress-Related Mental Disorders) cohort with and without MDD but also with anxiety, attention-deficit/hyperactivity disorder, and/or autism (n = 66) and healthy control subjects (n = 24). To investigate reward and punishment learning, we employed a deterministic reversal learning task with functional magnetic resonance imaging. RESULTS: In contrast to previous studies, patients with MDD did not exhibit impaired reward learning or reduced reward-related neural activity anywhere in the brain. Interestingly, we observed consistently increased neural responses in the bilateral lateral prefrontal cortex of patients when they received a surprising reward. This increase was not specific to MDD, but generalized to anxiety, attention-deficit/hyperactivity disorder, and autism. Critically, increased prefrontal activity to surprising reward scaled with transdiagnostic symptom severity, particularly that associated with concentration and attention, as well as the number of diagnoses; patients with more comorbidities showed a stronger prefrontal response to surprising reward. CONCLUSIONS: Prefrontal enhancement may reflect compensatory working memory recruitment, possibly to counteract the inability to swiftly update reward expectations. This neural mechanism may provide a candidate transdiagnostic index of psychiatric severity.


Subject(s)
Depressive Disorder, Major , Depression , Humans , Learning , Punishment , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...