Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Sci Data ; 11(1): 464, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719839

ABSTRACT

Improving patient care and advancing scientific discovery requires responsible sharing of research data, healthcare records, biosamples, and biomedical resources that must also respect applicable use conditions. Defining a standard to structure and manage these use conditions is a complex and challenging task. This is exemplified by a near unlimited range of asset types, a high variability of applicable conditions, and differing applications at the individual or collective level. Furthermore, the specifics and granularity required are likely to vary depending on the ultimate contexts of use. All these factors confound alignment of institutional missions, funding objectives, regulatory and technical requirements to facilitate effective sharing. The presented work highlights the complexity and diversity of the problem, reviews the current state of the art, and emphasises the need for a flexible and adaptable approach. We propose Digital Use Conditions (DUC) as a framework that addresses these needs by leveraging existing standards, striking a balance between expressiveness versus ambiguity, and considering the breadth of applicable information with their context of use.


Subject(s)
Information Dissemination , Humans
2.
Sci Data ; 11(1): 465, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719810

ABSTRACT

Myriad policy, ethical and legal considerations underpin the sharing of biological resources, implying the need for standardised and yet flexible ways to digitally represent diverse 'use conditions'. We report a core lexicon of terms that are atomic, non-directional 'concepts of use', called Common Conditions of use Elements. This work engaged biobanks and registries relevant to the European Joint Programme for Rare Diseases and aimed to produce a lexicon that would have generalised utility. Seventy-six concepts were initially identified from diverse real-world settings, and via iterative rounds of deliberation and user-testing these were optimised and condensed down to 20 items. To validate utility, support software and training information was provided to biobanks and registries who were asked to create Sharing Policy Profiles. This succeeded and involved adding standardised directionality and scope annotations to the employed terms. The addition of free-text parameters was also explored. The approach is now being adopted by several real-world projects, enabling this standard to evolve progressively into a universal basis for representing and managing conditions of use.


Subject(s)
Biological Specimen Banks , Humans , Information Dissemination , Registries
3.
Database (Oxford) ; 20242024 Feb 22.
Article in English | MEDLINE | ID: mdl-38554132

ABSTRACT

In this report, we analyse the use of virtual reality (VR) as a method to navigate and explore complex knowledge graphs. Over the past few decades, linked data technologies [Resource Description Framework (RDF) and Web Ontology Language (OWL)] have shown to be valuable to encode such graphs and many tools have emerged to interactively visualize RDF. However, as knowledge graphs get larger, most of these tools struggle with the limitations of 2D screens or 3D projections. Therefore, in this paper, we evaluate the use of VR to visually explore SPARQL Protocol and RDF Query Language (SPARQL) (construct) queries, including a series of tutorial videos that demonstrate the power of VR (see Graph2VR tutorial playlist: https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH). We first review existing methods for Linked Data visualization and then report the creation of a prototype, Graph2VR. Finally, we report a first evaluation of the use of VR for exploring linked data graphs. Our results show that most participants enjoyed testing Graph2VR and found it to be a useful tool for graph exploration and data discovery. The usability study also provides valuable insights for potential future improvements to Linked Data visualization in VR.


Subject(s)
Semantic Web , Virtual Reality , Humans , Databases, Factual , Language
4.
Biopreserv Biobank ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497765

ABSTRACT

Introduction: The Minimum Information About BIobank Data Sharing (MIABIS) is a biobank-specific terminology enabling the sharing of biobank-related data for different purposes across a wide range of database implementations. After 4 years in use and with the first version of the individual-level MIABIS component Sample, Sample donor, and Event, it was necessary to revise the terminology, especially to include biobanks that work more in the data domain than with samples. Materials & Methods: Nine use-cases representing different types of biobanks, studies, and networks participated in the development work. They represent types of data, specific sample types, or levels of organization that were not included earlier in MIABIS. To support our revision of the Biobank entity, we conducted a survey of European biobanks to chart the services they provide. An important stakeholder group for biobanks include researchers as the main users of biobanks. To be able to render MIABIS more researcher-friendly, we collected different sample/data requests to analyze the terminology adjustment needs in detail. During the update process, the Core terminology was iteratively reviewed by a large group of experts until a consensus was reached. Results: With this update, MIABIS was adjusted to encompass data-driven biobanks and to include data collections, while also describing the services and capabilities biobanks offer to their users, besides the retrospective samples. The terminology was also extended to accommodate sample and data collections of nonhuman origin. Additionally, a set of organizational attributes was compiled to describe networks. Discussion: The usability of MIABIS Core v3 was increased by extending it to cover more topics of the biobanking domain. Additionally, the focus was on a more general terminology and harmonization of attributes with the individual-level entities Sample, Sample donor, and Event to keep the overall terminology minimal. With this work, the internal semantics of the MIABIS terminology was improved.

5.
Database (Oxford) ; 20232023 04 26.
Article in English | MEDLINE | ID: mdl-37114804

ABSTRACT

The mapping of human-entered data to codified data formats that can be analysed is a common problem across medical research and health care. To identify risk and protective factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and coronavirus disease 2019 (COVID-19) severity, frequent questionnaires were sent out to participants of the Lifelines Cohort Study starting 30 March 2020. Because specific drugs were suspected COVID-19 risk factors, the questionnaires contained multiple-choice questions about commonly used drugs and open-ended questions to capture all other drugs used. To classify and evaluate the effects of those drugs and group participants taking similar drugs, the free-text answers needed to be translated into standard Anatomical Therapeutic Chemical (ATC) codes. This translation includes handling misspelt drug names, brand names, comments or multiple drugs listed in one line that would prevent a computer from finding these terms in a simple lookup table. In the past, the translation of free-text responses to ATC codes was time-intensive manual labour for experts. To reduce the amount of manual curation required, we developed a method for the semi-automated recoding of the free-text questionnaire responses into ATC codes suitable for further analysis. For this purpose, we built an ontology containing the Dutch drug names linked to their respective ATC code(s). In addition, we designed a semi-automated process that builds upon the Molgenis method SORTA to map the responses to ATC codes. This method can be applied to support the encoding of free-text responses to facilitate the evaluation, categorization and filtering of free-text responses. Our semi-automatic approach to coding of drugs using SORTA turned out to be more than two times faster than current manual approaches to performing this activity. Database URL https://doi.org/10.1093/database/baad019.


Subject(s)
COVID-19 , Humans , Cohort Studies , COVID-19/epidemiology , SARS-CoV-2 , Surveys and Questionnaires , Databases, Factual
6.
J Dev Orig Health Dis ; 14(2): 190-198, 2023 04.
Article in English | MEDLINE | ID: mdl-35957574

ABSTRACT

Optimizing research on the developmental origins of health and disease (DOHaD) involves implementing initiatives maximizing the use of the available cohort study data; achieving sufficient statistical power to support subgroup analysis; and using participant data presenting adequate follow-up and exposure heterogeneity. It also involves being able to undertake comparison, cross-validation, or replication across data sets. To answer these requirements, cohort study data need to be findable, accessible, interoperable, and reusable (FAIR), and more particularly, it often needs to be harmonized. Harmonization is required to achieve or improve comparability of the putatively equivalent measures collected by different studies on different individuals. Although the characteristics of the research initiatives generating and using harmonized data vary extensively, all are confronted by similar issues. Having to collate, understand, process, host, and co-analyze data from individual cohort studies is particularly challenging. The scientific success and timely management of projects can be facilitated by an ensemble of factors. The current document provides an overview of the 'life course' of research projects requiring harmonization of existing data and highlights key elements to be considered from the inception to the end of the project.


Subject(s)
Research Design , Humans , Cohort Studies , Retrospective Studies
7.
Yearb Med Inform ; 31(1): 262-272, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36463884

ABSTRACT

OBJECTIVES: Existing individual-level human data cover large populations on many dimensions such as lifestyle, demography, laboratory measures, clinical parameters, etc. Recent years have seen large investments in data catalogues to FAIRify data descriptions to capitalise on this great promise, i.e. make catalogue contents more Findable, Accessible, Interoperable and Reusable. However, their valuable diversity also created heterogeneity, which poses challenges to optimally exploit their richness. METHODS: In this opinion review, we analyse catalogues for human subject research ranging from cohort studies to surveillance, administrative and healthcare records. RESULTS: We observe that while these catalogues are heterogeneous, have various scopes, and use different terminologies, still the underlying concepts seem potentially harmonizable. We propose a unified framework to enable catalogue data sharing, with catalogues of multi-center cohorts nested as a special case in catalogues of real-world data sources. Moreover, we list recommendations to create an integrated community of metadata catalogues and an open catalogue ecosystem to sustain these efforts and maximise impact. CONCLUSIONS: We propose to embrace the autonomy of motivated catalogue teams and invest in their collaboration via minimal standardisation efforts such as clear data licensing, persistent identifiers for linking same records between catalogues, minimal metadata 'common data elements' using shared ontologies, symmetric architectures for data sharing (push/pull) with clear provenance tracks to process updates and acknowledge original contributors. And most importantly, we encourage the creation of environments for collaboration and resource sharing between catalogue developers, building on international networks such as OpenAIRE and research data alliance, as well as domain specific ESFRIs such as BBMRI and ELIXIR.


Subject(s)
Common Data Elements , Ecosystem , Humans , Cohort Studies , Information Dissemination
8.
Sci Data ; 9(1): 169, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418585

ABSTRACT

The genomes of thousands of individuals are profiled within Dutch healthcare and research each year. However, this valuable genomic data, associated clinical data and consent are captured in different ways and stored across many systems and organizations. This makes it difficult to discover rare disease patients, reuse data for personalized medicine and establish research cohorts based on specific parameters. FAIR Genomes aims to enable NGS data reuse by developing metadata standards for the data descriptions needed to FAIRify genomic data while also addressing ELSI issues. We developed a semantic schema of essential data elements harmonized with international FAIR initiatives. The FAIR Genomes schema v1.1 contains 110 elements in 9 modules. It reuses common ontologies such as NCIT, DUO and EDAM, only introducing new terms when necessary. The schema is represented by a YAML file that can be transformed into templates for data entry software (EDC) and programmatic interfaces (JSON, RDF) to ease genomic data sharing in research and healthcare. The schema, documentation and MOLGENIS reference implementation are available at https://fairgenomes.org .


Subject(s)
High-Throughput Nucleotide Sequencing , Metadata , Delivery of Health Care , Genomics , Humans , Software
9.
Environ Epidemiol ; 6(1): e184, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169663

ABSTRACT

The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our "modern" postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.

10.
Environ Epidemiol ; 5(5): e166, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34934888

ABSTRACT

Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.

11.
Cell Genom ; 1(2): None, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34820659

ABSTRACT

Human biomedical datasets that are critical for research and clinical studies to benefit human health also often contain sensitive or potentially identifying information of individual participants. Thus, care must be taken when they are processed and made available to comply with ethical and regulatory frameworks and informed consent data conditions. To enable and streamline data access for these biomedical datasets, the Global Alliance for Genomics and Health (GA4GH) Data Use and Researcher Identities (DURI) work stream developed and approved the Data Use Ontology (DUO) standard. DUO is a hierarchical vocabulary of human and machine-readable data use terms that consistently and unambiguously represents a dataset's allowable data uses. DUO has been implemented by major international stakeholders such as the Broad and Sanger Institutes and is currently used in annotation of over 200,000 datasets worldwide. Using DUO in data management and access facilitates researchers' discovery and access of relevant datasets. DUO annotations increase the FAIRness of datasets and support data linkages using common data use profiles when integrating the data for secondary analyses. DUO is implemented in the Web Ontology Language (OWL) and, to increase community awareness and engagement, hosted in an open, centralized GitHub repository. DUO, together with the GA4GH Passport standard, offers a new, efficient, and streamlined data authorization and access framework that has enabled increased sharing of biomedical datasets worldwide.

12.
Orphanet J Rare Dis ; 16(1): 376, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34481493

ABSTRACT

BACKGROUND: Patient data registries that are FAIR-Findable, Accessible, Interoperable, and Reusable for humans and computers-facilitate research across multiple resources. This is particularly relevant to rare diseases, where data often are scarce and scattered. Specific research questions can be asked across FAIR rare disease registries and other FAIR resources without physically combining the data. Further, FAIR implies well-defined, transparent access conditions, which supports making sensitive data as open as possible and as closed as necessary. RESULTS: We successfully developed and implemented a process of making a rare disease registry for vascular anomalies FAIR from its conception-de novo. Here, we describe the five phases of this process in detail: (i) pre-FAIRification, (ii) facilitating FAIRification, (iii) data collection, (iv) generating FAIR data in real-time, and (v) using FAIR data. This includes the creation of an electronic case report form and a semantic data model of the elements to be collected (in this case: the "Set of Common Data Elements for Rare Disease Registration" released by the European Commission), and the technical implementation of automatic, real-time data FAIRification in an Electronic Data Capture system. Further, we describe how we contribute to the four facets of FAIR, and how our FAIRification process can be reused by other registries. CONCLUSIONS: In conclusion, a detailed de novo FAIRification process of a registry for vascular anomalies is described. To a large extent, the process may be reused by other rare disease registries, and we envision this work to be a substantial contribution to an ecosystem of FAIR rare disease resources.


Subject(s)
Ecosystem , Rare Diseases , Humans , Rare Diseases/epidemiology , Registries
13.
Biopreserv Biobank ; 19(5): 414-421, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34182766

ABSTRACT

Various biological resources, such as biobanks and disease-specific registries, have become indispensable resources to better understand the epidemiology and biological mechanisms of disease and are fundamental for advancing medical research. Nevertheless, biobanks and similar resources still face significant challenges to become more findable and accessible by users on both national and global scales. One of the main challenges for users is to find relevant resources using cataloging and search services such as the BBMRI-ERIC Directory, operated by European Research Infrastructure on Biobanking and Biomolecular Resources (BBMRI-ERIC), as these often do not contain the information needed by the researchers to decide if the resource has relevant material/data; these resources are only weakly characterized. Hence, the researcher is typically left with too many resources to explore and investigate. In addition, resources often have complex procedures for accessing holdings, particularly for depletable biological materials. This article focuses on designing a system for effective negotiation of access to holdings, in which a researcher can approach many resources simultaneously, while giving each resource team the ability to implement their own mechanisms to check if the material/data are available and to decide if access should be provided. The BBMRI-ERIC has developed and implemented an access and negotiation tool called the BBMRI-ERIC Negotiator. The Negotiator enables access negotiation to more than 600 biobanks from the BBMRI-ERIC Directory and other discovery services such as GBA/BBMRI-ERIC Locator or RD-Connect Finder. This article summarizes the principles that guided the design of the tool, the terminology used and underlying data model, request workflows, authentication and authorization mechanism(s), and the mechanisms and monitoring processes to stimulate the desired behavior of the resources: to effectively deliver access to biological material and data.


Subject(s)
Biological Specimen Banks , Biomedical Research , Information Dissemination
14.
Eur J Epidemiol ; 36(5): 565-580, 2021 May.
Article in English | MEDLINE | ID: mdl-33884544

ABSTRACT

The Horizon2020 LifeCycle Project is a cross-cohort collaboration which brings together data from multiple birth cohorts from across Europe and Australia to facilitate studies on the influence of early-life exposures on later health outcomes. A major product of this collaboration has been the establishment of a FAIR (findable, accessible, interoperable and reusable) data resource known as the EU Child Cohort Network. Here we focus on the EU Child Cohort Network's core variables. These are a set of basic variables, derivable by the majority of participating cohorts and frequently used as covariates or exposures in lifecourse research. First, we describe the process by which the list of core variables was established. Second, we explain the protocol according to which these variables were harmonised in order to make them interoperable. Third, we describe the catalogue developed to ensure that the network's data are findable and reusable. Finally, we describe the core data, including the proportion of variables harmonised by each cohort and the number of children for whom harmonised core data are available. EU Child Cohort Network data will be analysed using a federated analysis platform, removing the need to physically transfer data and thus making the data more accessible to researchers. The network will add value to participating cohorts by increasing statistical power and exposure heterogeneity, as well as facilitating cross-cohort comparisons, cross-validation and replication. Our aim is to motivate other cohorts to join the network and encourage the use of the EU Child Cohort Network by the wider research community.


Subject(s)
Databases, Factual/standards , Information Dissemination , Child , Child, Preschool , Cohort Studies , Europe , Humans , Public Health
15.
Acta Oncol ; 60(5): 567-574, 2021 May.
Article in English | MEDLINE | ID: mdl-33295823

ABSTRACT

BACKGROUND AND PURPOSE: Reducing breathing motion in radiotherapy (RT) is an attractive strategy to reduce margins and better spare normal tissues. The objective of this prospective study (NCT03729661) was to investigate the feasibility of irradiation of non-small cell lung cancer (NSCLC) with visually guided moderate deep inspiration breath-hold (IBH) using nasal high-flow therapy (NHFT). MATERIAL AND METHODS: Locally advanced NSCLC patients undergoing photon RT were given NHFT with heated humidified air (flow: 40 L/min with 80% oxygen) through a nasal cannula. IBH was monitored by optical surface tracking (OST) with visual feedback. At a training session, patients had to hold their breath as long as possible, without and with NHFT. For the daily cone beam CT (CBCT) and RT treatment in IBH, patients were instructed to keep their BH as long as it felt comfortable. OST was used to analyze stability and reproducibility of the BH, and CBCT to analyze daily tumor position. Subjective tolerance was measured with a questionnaire at 3 time points. RESULTS: Of 10 included patients, 9 were treated with RT. Seven (78%) completed the treatment with NHFT as planned. At the training session, the mean BH length without NHFT was 39 s (range 15-86 s), and with NHFT 78 s (range 29-223 s) (p = .005). NHFT prolonged the BH duration by a mean factor of 2.1 (range 1.1-3.9s). The mean overall stability and reproducibility were within 1 mm. Subjective tolerance was very good with the majority of patients having no or minor discomfort caused by the devices. The mean inter-fraction tumor position variability was 1.8 mm (-1.1-8.1 mm;SD 2.4 mm). CONCLUSION: NHFT for RT treatment of NSCLC in BH is feasible, well tolerated and significantly increases the breath-hold duration. Visually guided BH with OST is stable and reproducible. We therefore consider this an attractive patient-friendly approach to treat lung cancer patients with RT in BH.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Breath Holding , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/radiotherapy , Prospective Studies , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
17.
Eur J Hum Genet ; 28(6): 728-731, 2020 06.
Article in English | MEDLINE | ID: mdl-32444797

ABSTRACT

During the COVID-19 pandemic, the European biobanking infrastructure is in a unique position to preserve valuable biological material complemented with detailed data for future research purposes. Biobanks can be either integrated into healthcare, where preservation of the biological material is a fork in clinical routine diagnostics and medical treatment processes or they can also host prospective cohorts or material related to clinical trials. The paper discussed objectives of BBMRI-ERIC, the European research infrastructure established to facilitate access to quality-defined biological materials and data for research purposes, with respect to the COVID-19 crisis: (a) to collect information on available European as well as non-European COVID-19-relevant biobanking resources in BBMRI-ERIC Directory and to facilitate access to these via BBMRI-ERIC Negotiator platform; (b) to help harmonizing guidelines on how data and biological material is to be collected to maximize utility for future research, including large-scale data processing in artificial intelligence, by participating in activities such as COVID-19 Host Genetics Initiative; (c) to minimize risks for all involved parties dealing with (potentially) infectious material by developing recommendations and guidelines; (d) to provide a European-wide platform of exchange in relation to ethical, legal, and societal issues (ELSI) specific to the collection of biological material and data during the COVID-19 pandemic.


Subject(s)
Betacoronavirus/pathogenicity , Biomedical Research/organization & administration , Coronavirus Infections/epidemiology , Information Dissemination/methods , International Cooperation/legislation & jurisprudence , Pandemics , Pneumonia, Viral/epidemiology , Antiviral Agents/therapeutic use , Artificial Intelligence , Betacoronavirus/drug effects , Betacoronavirus/genetics , Biological Specimen Banks/supply & distribution , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Datasets as Topic , Europe/epidemiology , Humans , Information Dissemination/ethics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Practice Guidelines as Topic , Public Health/economics , SARS-CoV-2
18.
Biopreserv Biobank ; 18(3): 155-164, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32302498

ABSTRACT

Introduction: The Minimum Information About BIobank data Sharing (MIABIS) was initiated in 2012. MIABIS aims to create a common biobank terminology to facilitate data sharing in biobanks and sample collections. The MIABIS Core terminology consists of three components describing biobanks, sample collections, and studies, in which information on samples and sample donors is provided at aggregated form. However, there is also a need to describe samples and sample donors at an individual level to allow more elaborate queries on available biobank samples and data. Therefore the MIABIS terminology has now been extended with components describing samples and sample donors at an individual level. Materials and Methods: The components were defined according to specific scope and use cases by a large group of experts, and through several cycles of reviews, according to the new MIABIS governance model of BBMRI-ERIC (Biobanking and Biomolecular Resources Research Infrastructure-European Research Infrastructure Consortium). The guiding principles applied in developing these components included the following terms: model should consider only samples of human origin, model should be applicable to all types of samples and all sample donors, and model should describe the current status of samples stored in a given biobank. Results: A minimal set of standard attributes for defining samples and sample donors is presented here. We added an "event" component to describe attributes that are not directly describing samples or sample donors but are tightly related to them. To better utilize the generic data model, we suggest a procedure by which interoperability can be promoted, using specific MIABIS profiles. Discussion: The MIABIS sample and donor component extensions and the new generic data model complement the existing MIABIS Core 2.0 components, and substantially increase the potential usability of this terminology for better describing biobank samples and sample donors. They also support the use of individual level data about samples and sample donors to obtain accurate and detailed biobank availability queries.


Subject(s)
Biological Specimen Banks , Information Dissemination/methods , Guidelines as Topic , Humans , Terminology as Topic
19.
JAMIA Open ; 3(3): 472-486, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33426479

ABSTRACT

The premise of Open Science is that research and medical management will progress faster if data and knowledge are openly shared. The value of Open Science is nowhere more important and appreciated than in the rare disease (RD) community. Research into RDs has been limited by insufficient patient data and resources, a paucity of trained disease experts, and lack of therapeutics, leading to long delays in diagnosis and treatment. These issues can be ameliorated by following the principles and practices of sharing that are intrinsic to Open Science. Here, we describe how the RD community has adopted the core pillars of Open Science, adding new initiatives to promote care and research for RD patients and, ultimately, for all of medicine. We also present recommendations that can advance Open Science more globally.

SELECTION OF CITATIONS
SEARCH DETAIL
...