Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 20(7): 4802-4810, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33828440

ABSTRACT

The flatness of muscovite mica makes it a convenient substrate to study epitaxy. We have analyzed the growth of rhodochrosite (MnCO3) crystals in solution and on muscovite mica. Growth at high supersaturations occurs via the formation of amorphous MnCO3, which over time transforms into the crystalline form. In the presence of muscovite mica, epitaxial rhodochrosite crystals with a size of approximately 1 µm form. These crystals are kinetically roughened, because of the high supersaturation. The lattice match between MnCO3 and muscovite was found not to be the main reason for epitaxy. If the growth experiment is performed twice, the original epitaxial MnCO3 crystals are overgrown by many small crystallites. Similarly, spherical MnCO3 crystals with many overgrown facets can be formed on a muscovite surface that is exposed to humidity or by using a higher MnCO3 supersaturation. A comparison with calcite shows that epitaxy strongly depends on initial supersaturation for both carbonates. In contrast to previous studies, we find that at the right supersaturation, epitaxial calcite crystal growth is possible on freshly cleaved muscovite.

2.
Angew Chem Int Ed Engl ; 59(6): 2323-2327, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31765512

ABSTRACT

Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X-ray diffraction, and vibrational sum-frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self-assembled into (water) stable and adaptable ultra-flat organothiol monolayers over homogenous areas as large as 1 cm2 . The strength of the mica-organothiol interactions could be tuned by exchanging the potassium surface ions for copper ions. Several of these organothiol monolayers were subsequently used as a template for calcite growth.

3.
Chemistry ; 25(15): 3756-3760, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30667553

ABSTRACT

Two-dimensional polymers (2DP) are a new class of materials that consist of a monolayer of ordered molecular building blocks, which have been covalently linked. One of these monomers was self-assembled on a flat muscovite mica scaffold and subsequently the organic layer was polymerized. The resulting flat and stable 2DP layer was used as a template for protein crystallization. Crystals of insulin were epitaxially grown on the template, whereas insulin crystals grown on clean muscovite mica had a random orientation. The template was selective, considering that no epitaxially ordered crystals formed of hen egg white lysozyme, bovine serum albumin, or talin.

4.
Cryst Growth Des ; 18(9): 5099-5107, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30258306

ABSTRACT

A growth cell suitable for microscopic in situ observation of well-controlled crystal growth from the vapor phase is used to study the heteroepitaxial growth of anthraquinone crystals on a (100) NaCl substrate. In this, the morphology, orientation, nucleation, and growth rate of the crystals is studied as a function of driving force, Δµ/kT. At the lowest Δµ/kT, the crystals are block-shaped and show no preferential orientation with respect to the substrate. Increasing the driving force leads to the growth of oriented block- and needle-shaped crystals, which nucleate from macrosteps on the substrate. At the highest Δµ/kT, crystals nucleate on the flat surface areas or at monatomic steps on the substrate, resulting in a dramatic increase in epitaxial needle density. Growth rate measurements show an exponential behavior as a function of Δµ/kT. In all cases, the supply of growth units proceeds via surface diffusion over the NaCl substrate surface toward the anthraquinone crystals. At the lowest Δµ/kT, growth is partly limited by integration of the growth units at the crystal surfaces. At intermediate driving force, kinetic roughening sets in, leading to rounded needle tips. At the highest supersaturation, growth is completely governed by the supply of growth units via surface diffusion, leading to tip splitting as a consequence of morphological instability.

5.
Cryst Growth Des ; 18(2): 755-762, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29910693

ABSTRACT

A multitude of ultrathin crystal needles are formed during the evaporation of saturated aqueous NaCl solution droplets in the presence of amide containing additives. The needles are as small as 300 nm wide and 100-1000 µm in length. Heating experiments, X-ray diffraction, and energy dispersive X-ray spectroscopy showed that the needles are cubic sodium chloride crystals with the needle length direction pointing toward [100]. This shape, not expected for the 43̅m point group symmetry of NaCl, has been explained using a model, based on tip formation by initial morphological instability followed by time dependent adsorption of additive molecules blocking the growth of the needle side faces. The latter also suppresses side branch formation, which normally occurs for dendrite growth.

6.
J Chem Phys ; 148(14): 144703, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29655363

ABSTRACT

The role that additives play in the growth of sodium chloride is a topic which has been widely researched but not always fully understood at an atomic level. Lead chloride (PbCl2) is one such additive which has been reported to have growth inhibition effects on NaCl {100} and {111}; however, no definitive evidence has been reported which details the mechanism of this interaction. In this investigation, we used the technique of surface x-ray diffraction to determine the interaction between PbCl2 and NaCl {100} and the structure at the surface. We find that Pb2+ replaces a surface Na+ ion, while a Cl- ion is located on top of the Pb2+. This leads to a charge mismatch in the bulk crystal, which, as energetically unfavourable, leads to a growth blocking effect. While this is a similar mechanism as in the anticaking agent ferrocyanide, the effect of PbCl2 is much weaker, most likely due to the fact that the Pb2+ ion can more easily desorb. Moreover, PbCl2 has an even stronger effect on NaCl {111}.

7.
Cryst Growth Des ; 18(2): 763-769, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29445315

ABSTRACT

Surfaces with controllable topography and chemistry were prepared to act as substrates for protein crystallization, in order to investigate the influence of these surface properties on the protein crystallization outcome. Three different methods were investigated to deposit 1,3,5-tris(10-carboxydecyloxy)benzene (TCDB) on a muscovite mica substrate to find the best route for controlled topography. Of these three, sublimation worked best. Contact angle measurements revealed that the surfaces with short exposure to the TCDB vapor (20 min or less) are hydrophilic, while surfaces exposed for 30 min or longer are hydrophobic. The hydrophilic surfaces are flat with low steps, while the hydrophobic surfaces contain macrosteps. Four model proteins were used for crystallization on the surfaces with controlled topography and chemistry. Hen egg white lysozyme crystals were less numerous on the surface with macrosteps than on smoother surfaces. On the other hand, insulin nucleated faster on the hydrophobic surfaces with macrosteps, and therefore, the crystals were more abundant and smaller. Bovine serum albumin and talin protein crystals were more numerous on all TCDB functionalized surfaces, compared to the reference clean muscovite mica surfaces. Overall, this shows that surface topography and chemistry is an important factor that partly determines the outcome in a protein crystallization experiment.

8.
Cryst Growth Des ; 17(6): 3107-3115, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28615995

ABSTRACT

This article investigates the mechanism behind the creeping of sodium chloride induced by additives. Here, an experimental approach is complemented with theoretical considerations to describe how creeping patterns of brine evolve and how the introduction of additives into the solution affects the morphology of the resultant crystals. We have found that these additives cause kinetic roughening and morphological instability mainly due to the reduction of surface free energy. There was also a marked increase in three-dimensional nucleation of the NaCl crystals and thus branching.

9.
Dalton Trans ; 45(15): 6650-9, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26974191

ABSTRACT

Iron(III) meso-tartrate, a metal-organic complex, is a new anticaking agent for sodium chloride. A molecular structure in solution is proposed, based on a combination of experimental and molecular modelling results. We show that the active complex is a binuclear iron(iii) complex with two bridging meso-tartrate ligands. The iron atoms are antiferromagnetically coupled, resulting in a reduced paramagnetic nature of the solution. In solution, a water molecule coordinates to each iron atom as a sixth ligand, resulting in an octahedral symmetry around each iron atom. When the water molecule is removed, a flat and charged site is exposed, matching the charge distribution of the {100} sodium chloride crystal surface. This charge distribution is also found in the iron(iii) citrate complex, another anticaking agent. This gives a possible adsorption geometry on the crystal surface, which in turn explains the anticaking activity of the iron(III) meso-tartrate complex.

10.
ACS Appl Mater Interfaces ; 7(16): 8495-505, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25822583

ABSTRACT

Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture.


Subject(s)
Collagen/chemistry , Freezing , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Acetic Acid/pharmacology , Animals , Cattle , Detergents/pharmacology , Microscopy, Electron, Scanning , Polyvinyl Alcohol/chemistry , Porosity
11.
Nat Commun ; 5: 5543, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412651

ABSTRACT

The synthesis of enantiopure molecules from achiral precursors without the need for pre-existing chirality is a major challenge associated with the origin of life. We here show that an enantiopure product can be obtained from achiral starting materials in a single organic reaction. An essential characteristic of this reaction is that the chiral product precipitates from the solution, introducing a crystal-solution interface which functions as an asymmetric autocatalytic system that provides sufficient chiral amplification to reach an enantiopure end state. This approach not only provides more insight into the origin of life but also offers a pathway to acquire enantiopure compounds for industrial applications.


Subject(s)
Aniline Compounds/chemistry , Ketones/chemistry , Molecular Conformation , Catalysis , Crystallization , Liquid Crystals/chemistry , Molecular Structure , Stereoisomerism
12.
Langmuir ; 30(42): 12570-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25263250

ABSTRACT

Stable layers of crown ethers were grown on muscovite mica using the potassium-crown ether interaction. The multilayers were grown from solution and from the vapor phase and were analyzed with atomic force microscopy (AFM), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and surface X-ray diffraction (SXRD). The results show that the first molecular layer of the three investigated dibenzo crown ethers is more rigid than the second because of the strong interaction of the first molecular layer with the potassium ions on the surface of muscovite mica. SXRD measurements revealed that for all of the investigated dibenzo crown ethers the first molecule lies relatively flat whereas the second lies more upright. The SXRD measurements further revealed that the molecules of the first layer of dibenzo-15-crown-5 are on top of a potassium atom, showing that the binding mechanism of this layer is indeed of the coordination complex form. The AFM and SXRD data are in good agreement, and the combination of these techniques is therefore a powerful way to determine the molecular orientation at surfaces.

13.
Chemistry ; 20(42): 13527-30, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25168197

ABSTRACT

Here we demonstrate that deracemization of isoindolinones using Viedma ripening is possible starting from a racemic mixture of conglomerate crystals. Crystals of the enantiopure isoindolinones lose their chiral identity upon dissolution even without the need for a catalyst. This enabled complete deracemization of the reported isoindolinones without a catalyst.


Subject(s)
Isoindoles/chemistry , Crystallization , Solubility , Stereoisomerism
14.
Phys Chem Chem Phys ; 15(30): 12451-8, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23620134

ABSTRACT

Self-assembled monolayers of meso-5,10,15,20-tetrakis(undecyl)porphyrin copper(II) on a graphite/1-octanoic acid interface have been studied by Scanning Tunnelling Microscopy. Four distinct polymorphs were observed, varying in their unit cell size. Arrays of unit cells of the various polymorphs seamlessly connect to each other via shared unit cell vectors. The monolayers are not commensurate, but coincident with the underlying graphite substrate. The seamless transition between the polymorphs is proposed to be the result of an adaptation of the molecular conformations in the polymorphs and at the boundaries, which is enabled by the conformational freedom of the alkyl tails of these molecules.


Subject(s)
Porphyrins/chemistry , Adsorption , Caprylates/chemistry , Copper/chemistry , Graphite/chemistry , Microscopy, Scanning Tunneling , Molecular Conformation
15.
Chem Commun (Camb) ; 47(34): 9666-8, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21799980

ABSTRACT

The transition from low to high density 2D surface structures of copper porphyrins at a liquid/solid interface requires specific defects at which nearly all exchange of physisorbed molecules with those dissolved in the supernatant occurs.

16.
Nano Lett ; 11(4): 1690-4, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21417242

ABSTRACT

Structure engineering is an emerging tool to control opto-electronic properties of semiconductors. Recently, control of crystal structure and the formation of a twinning superlattice have been shown for III-V nanowires. This level of control has not been obtained for Si nanowires, the most relevant material for the semiconductor industry. Here, we present an approach, in which a designed twinning superlattice with the zinc blende crystal structure or the wurtzite crystal structure is transferred from a gallium phosphide core wire to an epitaxially grown silicon shell. These materials have a difference in lattice constants of only 0.4%, which allows for structure transfer without introducing extra defects. The twinning superlattices, periodicity, and shell thickness can be tuned with great precision. Arrays of free-standing Si nanotubes are obtained by a selective wet-chemical etch of the core wire.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
17.
Nano Lett ; 11(1): 44-8, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21171613

ABSTRACT

We report an in situ surface X-ray diffraction study of liquid AuIn metal alloys in contact with zinc-blende InP (111)(B) substrates at elevated temperatures. We observe strong layering of the liquid metal alloy in the first three atomic layers in contact with the substrate. The first atomic layer of the alloy has a higher indium concentration than in bulk. In addition, in this first layer we find evidence for in-plane ordering at hollow sites, which could sterically hinder nucleation of zinc-blende InP. This can explain the typical formation of the wurtzite crystal structure in InP nanowires grown from AuIn metal particles.

19.
Nano Lett ; 10(7): 2349-56, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20509677

ABSTRACT

Formation of random as well as periodic planar defects can occur during vapor-liquid-solid growth of nanowires with the zinc-blende crystal structure. Here we investigate the formation of pairs of twin planes in GaP nanowires. In such pairs, the first twin plane is formed at a random position, rapidly followed by the formation of a second twin plane of which the position is directly related to that of the first one. We show that the triangular [112] morphology of the nanowire is a key element in the formation of these twin pairs. We have extended our previous kinetic nucleation model and show that this describes the development of the nanowire morphology and its relation with the formation of single and paired twin planes.

SELECTION OF CITATIONS
SEARCH DETAIL
...