Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
iScience ; 27(6): 109929, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799566

ABSTRACT

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

3.
bioRxiv ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37503145

ABSTRACT

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

4.
Biomolecules ; 13(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37371470

ABSTRACT

Insulin-degrading enzyme (IDE) is a highly conserved metalloprotease that is mainly localized in the cytosol. Although IDE can degrade insulin and some other low molecular weight substrates efficiently, its ubiquitous expression suggests additional functions supported by experimental findings, such as a role in stress responses and cellular protein homeostasis. The translation of a long full-length IDE transcript has been reported to result in targeting to mitochondria, but the role of IDE in this compartment is unknown. To obtain initial leads on the function of IDE in mitochondria, we used a proximity biotinylation approach to identify proteins interacting with wild-type and protease-dead IDE targeted to the mitochondrial matrix. We find that IDE interacts with multiple mitochondrial ribosomal proteins as well as with proteins involved in the synthesis and assembly of mitochondrial complex I and IV. The mitochondrial interactomes of wild type and mutant IDE are highly similar and do not reveal any likely proteolytic IDE substrates. We speculate that IDE could adopt similar additional non-proteolytic functions in mitochondria as in the cytosol, acting as a chaperone and contributing to protein homeostasis and stress responses.


Subject(s)
Electron Transport , Insulysin , Mitochondrial Ribosomes , Electron Transport/physiology , Insulin/metabolism , Insulysin/metabolism , Mitochondria/metabolism , Mitochondrial Ribosomes/metabolism , Peptide Hydrolases/metabolism , Humans
5.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150031

ABSTRACT

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Subject(s)
Hydroxychloroquine , Quality of Life , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Cytokines , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphatidate Phosphatase/genetics
6.
Front Immunol ; 14: 1206040, 2023.
Article in English | MEDLINE | ID: mdl-37234177

Subject(s)
Biology , Dendritic Cells
7.
Semin Immunol ; 67: 101764, 2023 05.
Article in English | MEDLINE | ID: mdl-37084655

ABSTRACT

The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.


Subject(s)
Antigen Presentation , Cross-Priming , Humans , CD8-Positive T-Lymphocytes , Dendritic Cells , Antigens
8.
J Allergy Clin Immunol ; 151(6): 1595-1608.e6, 2023 06.
Article in English | MEDLINE | ID: mdl-36708814

ABSTRACT

BACKGROUND: On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE: We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS: Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS: IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION: IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.


Subject(s)
Aminopeptidases , Cytokines , Mice , Animals , Insulin , Mast Cells , Tumor Necrosis Factor-alpha , Interleukin-6 , Inflammation
9.
Trends Immunol ; 44(2): 90-92, 2023 02.
Article in English | MEDLINE | ID: mdl-36526581

ABSTRACT

The Black Death, a notorious devastating pandemic caused by Yersinia pestis infection during the 14th century, posed a formidable challenge to human immune defenses. A new article by Klunk et al. reports that a variant in an antigen-processing gene may have favored survival during the plague and may have undergone genomic selection in Europeans at unprecedented speed.


Subject(s)
Plague , Yersinia pestis , Humans , Plague/epidemiology , Plague/genetics , Plague/history , Yersinia pestis/genetics , Genomics , Pandemics , Antigen Presentation
10.
Front Immunol ; 13: 1079913, 2022.
Article in English | MEDLINE | ID: mdl-36466849

Subject(s)
Biology
11.
J Med Chem ; 65(14): 10098-10117, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35833347

ABSTRACT

The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-ß-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-ß-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.


Subject(s)
Aminopeptidases , Insulin , Amino Acids/pharmacology , Aminopeptidases/chemistry , Cystinyl Aminopeptidase , Leucine/analogs & derivatives
12.
Bone Marrow Transplant ; 57(10): 1520-1530, 2022 10.
Article in English | MEDLINE | ID: mdl-35794259

ABSTRACT

Primary immunodeficiencies (PID) are heterogeneous inborn errors of the immune system. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative and safe at the pediatric age but remains underperformed in adults. We report our experience on 32 consecutive adult patients with various PID including 17 (53%) with a combined immune deficiency, six (19%) with a disease of immune dysregulation and nine (28%) with a chronic granulomatous disease (CGD) who underwent an allo-HSCT between 2011 and 2020. The median age at transplant was 27 years (17-41). All assessable patients engrafted. The majority of patients received a fludarabine-Busulfan (FB) based regimen (FB2-3 in 16, FB4 in 12). Overall survival (OS) was 80.4% (100% for CGD and 74% for other PID patients) at 9 months and beyond (median follow-up 51.6 months). Six patients died, all in the first-year post-transplant. Cumulative incidences of grade II-IV acute GVHD/chronic GVHD were 18%/22%. Stem cell source, GVHD prophylaxis and conditioning intensity had no impact on OS. All surviving patients had over 90% donor chimerism, immune reconstitution, no sign of active PID related complications and were clinically improved. Allo-HSCT is effective in young adults PID patients with an acceptable toxicity and should be discussed in case of life-threatening PID.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Busulfan/therapeutic use , Child , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Granulomatous Disease, Chronic/therapy , Humans , Transplantation Conditioning , Young Adult
13.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35483744

ABSTRACT

BACKGROUND: Retrospective clinical trials reported a reduced local relapse rate, as well as improved overall survival after injection of local anesthetics during cancer surgery. Here, we investigated the anticancer effects of six local anesthetics used in clinical practice. RESULTS: In vitro, local anesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress characterized by the splicing of X-box binding protein 1 (XBP1s) mRNA, cleavage of activating transcription factor 6 (ATF6), phosphorylation of eIF2α and subsequent upregulation of activating transcription factor 4 (ATF4). Both eIF2α phosphorylation and autophagy required the ER stress-relevant eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, best known as PERK). Local anesthetics also activated two hallmarks of immunogenic cell death, namely, the release of ATP and high-mobility group box 1 protein (HMGB1), yet failed to cause the translocation of calreticulin (CALR) from the ER to the plasma membrane. In vivo, locally injected anesthetics decreased tumor growth and improved survival in several models of tumors established in immunocompetent mice. Systemic immunotherapy with PD-1 blockade or intratumoral injection of recombinant CALR protein, increased the antitumor effects of local anesthetics. Local anesthetics failed to induce antitumor effects in immunodeficient mice or against cancers unable to activate ER stress or autophagy due to the knockout of EIF2AK3/PERK or ATG5, respectively. Uncoupling agents that inhibit oxidative phosphorylation and induce autophagy and ER stress mimicked the immune-dependent antitumor effects of local anesthetics. CONCLUSION: Altogether, these results indicate that local anesthetics induce a therapeutically relevant pattern of immunogenic stress responses in cancer cells.


Subject(s)
Anesthetics, Local , Neoplasms , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Anesthetics, Local/metabolism , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Humans , Mice , Neoplasms/pathology , Retrospective Studies
14.
Cell Rep ; 38(9): 110449, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235807

ABSTRACT

Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.


Subject(s)
HIV Infections , HIV-1 , Amino Acid Sequence , Amino Acids , Antigen Presentation , Epitopes, T-Lymphocyte , HLA-B Antigens/genetics , Humans , Peptides
15.
Neurol Genet ; 8(1): e648, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35079622

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine common clinical and biological traits in 2 individuals with variants in ISCU and FDX2, displaying severe and recurrent rhabdomyolyses and lactic acidosis. METHODS: We performed a clinical characterization of 2 distinct individuals with biallelic ISCU or FDX2 variants from 2 separate families and a biological characterization with muscle and cells from those patients. RESULTS: The individual with FDX2 variants was clinically more affected than the individual with ISCU variants. Affected FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption rates and mitochondrial complex I and PDHc activities, associated with high levels of blood FGF21. ISCU individual fibroblasts showed no oxidative phosphorylation deficiency and moderate increase of blood FGF21 levels relative to controls. The severity of the FDX2 individual was not due to dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient skeletal muscle, which was accompanied by a downregulation of IRP1 and mitoferrin2 genes and an upregulation of frataxin (FXN) gene expression. This excessive iron accumulation was absent from FDX2 affected muscle and could not be correlated with variable gene expression in muscle cells. DISCUSSION: We conclude that FDX2 and ISCU variants result in a similar muscle phenotype, that differ in severity and skeletal muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial iron influx contrary to frataxin.

16.
Cell Rep Med ; 2(8): 100370, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467247

ABSTRACT

LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.


Subject(s)
Mitochondria/metabolism , Phosphatidate Phosphatase/metabolism , Rhabdomyolysis/pathology , Autophagosomes/metabolism , Child , Child, Preschool , Chloroquine/pharmacology , DNA, Mitochondrial/metabolism , Endosomes/metabolism , Female , Follow-Up Studies , GTPase-Activating Proteins/metabolism , Humans , Inflammation/pathology , Lysosomes/metabolism , Male , Myoblasts/metabolism , Phosphatidate Phosphatase/deficiency , Phosphatidylinositol Phosphates , Signal Transduction , Toll-Like Receptor 9/metabolism , rab7 GTP-Binding Proteins/metabolism
17.
Elife ; 102021 05 26.
Article in English | MEDLINE | ID: mdl-34037522

ABSTRACT

Spliced peptides present on tumor cells can help to mount an immune response, but algorithms offer limited help in predicting which ones actually exist and perform this role in vivo.


Subject(s)
Epitopes, T-Lymphocyte , Proteasome Endopeptidase Complex , Algorithms , Peptides
18.
J Inherit Metab Dis ; 44(2): 415-425, 2021 03.
Article in English | MEDLINE | ID: mdl-32929747

ABSTRACT

TANGO2 disease is a severe inherited disorder associating multiple symptoms such as metabolic crises, encephalopathy, cardiac arrhythmias, and hypothyroidism. The mechanism of action of TANGO2 is currently unknown. Here, we describe a cohort of 20 French patients bearing mutations in the TANGO2 gene. We found that the main clinical presentation was the association of neurodevelopmental delay (n = 17), acute metabolic crises (n = 17) and hypothyroidism (n = 12), with a large intrafamilial clinical variability. Metabolic crises included rhabdomyolysis (15/17), neurological symptoms (14/17), and cardiac features (12/17; long QT (n = 10), Brugada pattern (n = 2), cardiac arrhythmia (n = 6)) that required intensive care. We show previously uncharacterized triggers of metabolic crises in TANGO2 patients, such as some anesthetics and possibly l-carnitine. Unexpectedly, plasma acylcarnitines, plasma FGF-21, muscle histology, and mitochondrial spectrometry were mostly normal. Moreover, in patients' primary myoblasts, palmitate and glutamine oxidation rates, and the mitochondrial network were also normal. Finally, we found variable mitochondrial respiration and defective clearance of oxidized DNA upon cycles of starvation and refeeding. We conclude that TANGO2 disease is a life-threatening disease that needs specific cardiac management and anesthesia protocol. Mechanistically, TANGO2 disease is unlikely to originate from a primary mitochondrial defect. Rather, we suggest that mitochondrial defects are secondary to strong extrinsic triggers in TANGO2 deficient patients.


Subject(s)
Arrhythmias, Cardiac/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/deficiency , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Neurodevelopmental Disorders/genetics , Rhabdomyolysis/genetics , Adolescent , Child , Child, Preschool , Exome , Female , France , Humans , Hypothyroidism/genetics , Infant , Male , Mitochondria/genetics , Mutation , Pedigree , Phenotype , Retrospective Studies , Young Adult
19.
Front Mol Biosci ; 7: 583556, 2020.
Article in English | MEDLINE | ID: mdl-33195428

ABSTRACT

Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.

20.
Front Immunol ; 11: 1814, 2020.
Article in English | MEDLINE | ID: mdl-33101266

ABSTRACT

Beta cell failure and apoptosis following islet inflammation have been associated with autoimmune type 1 diabetes pathogenesis. As conveyors of biological active material, extracellular vesicles (EV) act as mediators in communication with immune effectors fostering the idea that EV from inflamed beta cells may contribute to autoimmunity. Evidence accumulates that beta exosomes promote diabetogenic responses, but relative contributions of larger vesicles as well as variations in the composition of the beta cell's vesiculome due to environmental changes have not been explored yet. Here, we made side-by-side comparisons of the phenotype and function of apoptotic bodies (AB), microvesicles (MV) and small EV (sEV) isolated from an equal amount of MIN6 beta cells exposed to inflammatory, hypoxic or genotoxic stressors. Under normal conditions, large vesicles represent 93% of the volume, but only 2% of the number of the vesicles. Our data reveal a consistently higher release of AB and sEV and to a lesser extent of MV, exclusively under inflammatory conditions commensurate with a 4-fold increase in the total volume of the vesiculome and enhanced export of immune-stimulatory material including the autoantigen insulin, microRNA, and cytokines. Whilst inflammation does not change the concentration of insulin inside the EV, specific Toll-like receptor-binding microRNA sequences preferentially partition into sEV. Exposure to inflammatory stress engenders drastic increases in the expression of monocyte chemoattractant protein 1 in all EV and of interleukin-27 solely in AB suggesting selective sorting toward EV subspecies. Functional in vitro assays in mouse dendritic cells and macrophages reveal further differences in the aptitude of EV to modulate expression of cytokines and maturation markers. These findings highlight the different quantitative and qualitative imprints of environmental changes in subpopulations of beta EV that may contribute to the spread of inflammation and sustained immune cell recruitment at the inception of the (auto-) immune response.


Subject(s)
Cytokines/metabolism , Extracellular Vesicles/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Apoptosis , Cell Hypoxia , Cell Line, Tumor , DNA Damage , Dendritic Cells/immunology , Dendritic Cells/metabolism , Extracellular Vesicles/immunology , Extracellular Vesicles/ultrastructure , Female , Inflammation/immunology , Inflammation/pathology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/ultrastructure , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred NOD , MicroRNAs/metabolism , Phenotype , RAW 264.7 Cells , Secretory Pathway , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...