Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Prim Care Respir Med ; 30(1): 40, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968065

ABSTRACT

Although tobacco smoking is the world's most important preventable cause of many chronic diseases (including COPD and asthma) and premature death, many physicians do not routinely apply smoking cessation in the daily health care of their patients. Two widely felt important concerns of physicians are that smoking cessation as part of a treatment is time-consuming and may jeopardize their relationship with patients. Very Brief Advice (VBA) is a non-confrontational method, which could assist general practitioners (GPs) as a simple, quick first step in getting patients to stop smoking. In this study, we investigated the opinions and experiences of GPs with VBA in their routine care in two rounds of telephone interviews with 19 GPs. The interviews were recorded and transcribed and subsequently analysed with NVivo12. We observed that the GPs had a very positive experience with using VBA. They found the method to be efficient as to the time involved, patient-friendly and easy to implement.


Subject(s)
Directive Counseling/methods , General Practitioners , Adult , General Practitioners/statistics & numerical data , Humans , Interviews as Topic , Smoking Cessation/methods
2.
BMC Biotechnol ; 19(1): 56, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375100

ABSTRACT

BACKGROUND: Smoking and tobacco use continue to be the largest preventable causes of death globally. A novel therapeutic approach has recently been proposed: administration of an enzyme that degrades nicotine, the main addictive component of tobacco, minimizing brain exposure and reducing its reinforcing effects. Pre-clinical proof of concept has been previously established through dosing the amine oxidase NicA2 from Pseudomonas putida in rat nicotine self-administration models of addiction. RESULTS: This paper describes efforts towards optimizing NicA2 for potential therapeutic use: enhancing potency, improving its pharmacokinetic profile, and attenuating immunogenicity. Libraries randomizing residues located in all 22 active site positions of NicA2 were screened. 58 single mutations with 2- to 19-fold enhanced catalytic activity compared to wt at 10 µM nicotine were identified. A novel nicotine biosensor assay allowed efficient screening of the many primary hits for activity at nicotine concentrations typically found in smokers. 10 mutants with improved activity in rat serum at or below 250 nM were identified. These catalytic improvements translated to increased potency in vivo in the form of further lowering of nicotine blood levels and nicotine accumulation in the brains of Sprague-Dawley rats. Examination of the X-ray crystal structure suggests that these mutants may accelerate the rate limiting re-oxidation of the flavin adenine dinucleotide cofactor by enhancing molecular oxygen's access. PEGylation of NicA2 led to prolonged serum half-life and lowered immunogenicity observed in a human HLA DR4 transgenic mouse model, without impacting nicotine degrading activity. CONCLUSIONS: Systematic mutational analysis of the active site of the nicotine-degrading enzyme NicA2 has yielded 10 variants that increase the catalytic activity and its effects on nicotine distribution in vivo at nicotine plasma concentrations found in smokers. In addition, PEGylation substantially increases circulating half-life and reduces the enzyme's immunogenic potential. Taken together, these results provide a viable path towards generation of a drug candidate suitable for human therapeutic use in treating nicotine addiction.


Subject(s)
Monoamine Oxidase/metabolism , Nicotine/metabolism , Tobacco Use Disorder/metabolism , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Humans , Mice , Models, Molecular , Monoamine Oxidase/chemistry , Monoamine Oxidase/genetics , Mutation , Nicotine/chemistry , Protein Binding , Protein Domains , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Rats, Sprague-Dawley , Tobacco Use Disorder/enzymology , Tobacco Use Disorder/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...