Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 45(10): 1753-8, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22648145

ABSTRACT

Experimental modal analysis is a non-destructive measurement technique, which applies low forces and small deformations to assess the integrity of a structure. It is therefore a promising method to study the mechanical properties of the spine in vivo. Previously, modal parameters successfully revealed artificially induced spinal injuries. The question remains however, whether experimental modal analysis can be applied successfully in human spinal segments with mechanical changes due to physiological processes. Since quasi-static mechanical testing is considered the "gold standard" for assessing intervertebral stiffness, the purpose of our study was to examine if the mechanical properties derived from vibration testing and quasi-static testing correlate. Six cadaver human spines (L1-L5) were loaded quasi-statically in bending and torsion, while an optical system measured the angular rotations of the individual motion segments. Subsequently, the polysegmental spines were divided into L2-L3 and L4-L5 segments and a shaker was used to vibrate the upper vertebra, while its response was obtained from accelerometers in anteroposterior and mediolateral directions. From the resulting frequency response function the eigenfrequencies (ratio between stiffness and mass) and vibration modes (pattern of motion) were determined. The vibration results showed clear eigenfrequencies for flexion-extension (mean 121.83Hz, SD 40.05Hz), lateroflexion (mean 132.17, SD 34.80Hz) and axial rotation (mean 236.17Hz, SD 81.45Hz). Furthermore, the correlation between static and dynamic tests was significant (r=0.73, p=0.01). In conclusion, the findings from this study show that experimental modal analysis is a valid method to assess the mechanical properties of human lumbar motion segments.


Subject(s)
Lumbar Vertebrae/physiopathology , Spinal Injuries/etiology , Spinal Injuries/physiopathology , Stress, Physiological , Vibration/adverse effects , Aged , Aged, 80 and over , Female , Humans , Lumbar Vertebrae/pathology , Male , Motion , Spinal Injuries/pathology , Weight-Bearing
2.
J Biomech ; 44(8): 1478-83, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21450293

ABSTRACT

Structural vibration testing might be a promising method to study the mechanical properties of spinal motion segments as an alternative to imaging and spinal manipulation techniques. Structural vibration testing is a non-destructive measurement technique that measures the response of a system to an applied vibration as a function of frequency, and allows determination of modal parameters such as resonance frequencies (ratio between stiffness and mass), vibration modes (pattern of motion) and damping. The objective of this study was to determine if structural vibration testing can reveal the resonance frequencies that correspond to the mode shapes flexion-extension, lateroflexion and axial rotation of lumbar motion segments, and to establish whether resonance frequencies can discriminate specific structural alterations of the motion segment. Therefore, a shaker was used to vibrate the upper vertebra of 16 goat lumbar motion segments, while the response was obtained from accelerometers on the transverse and spinous processes and the anterior side of the upper vertebra. Measurements were performed in three conditions: intact, after dissection of the ligaments and after puncturing the annulus fibrosus. The results showed clear resonance peaks for flexion-extension, lateral bending and axial rotation for all segments. Dissection of the ligaments did not affect the resonance frequencies, but puncturing the annulus reduced the resonance frequency of axial rotation. These results indicate that vibration testing can be utilised to assess the modal parameters of lumbar motion segments, and might eventually be used to study the mechanical properties of spinal motion segments in vivo.


Subject(s)
Spine/pathology , Acceleration , Animals , Biomechanical Phenomena , Equipment Design , Goats , Intervertebral Disc , Lumbar Vertebrae/physiology , Lumbar Vertebrae/physiopathology , Materials Testing , Motion , Movement , Range of Motion, Articular/physiology , Rotation , Spine/anatomy & histology , Stress, Mechanical , Vibration
3.
Clin Biomech (Bristol, Avon) ; 25(8): 809-15, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20573430

ABSTRACT

BACKGROUND: This study examined metabolic energy cost and external mechanical work for step-to-step transitions after tibiotalar arthrodesis, and the effect of MBT rocker bottom shoes. METHODS: Oxygen uptake, forceplate and kinematic data were recorded in 18 controls and 15 patients while walking at a fixed speed of 1.25 m/s in three walking conditions: barefoot, normal walking shoes and MBT rocker bottom shoes. Metabolic energy cost, external mechanical work, and the roll-over shape of the ankle-foot complex were analyzed. FINDINGS: Tibiotalar arthrodesis leads to higher metabolic energy cost during walking. During step-to-step transitions positive work during push-off with the impaired ankle was decreased but negative work during collision was not affected. The roll-over shape of the ankle-foot complex did not differ between groups and shoe conditions. However, both in patients and controls rocker bottom shoes did lead to decreased positive work at push-off and increased negative work at collision and consequently higher metabolic energy cost of walking. INTERPRETATION: External mechanical work for step-to-step transitions is not different between patients and controls and could not account for the higher metabolic energy cost in patients. Apparently, patients adopt a different walking strategy that limits step-to-step transition cost but nevertheless induces a higher metabolic energy cost. Despite restricted ankle movement, patients retain a normal roll-over shape of the ankle-foot complex. MBT shoes do not affect roll-over shape and appear to have a counterproductive effect on step-to-step transition cost and walking economy.


Subject(s)
Ankle Joint/physiopathology , Ankle Joint/surgery , Arthrodesis , Energy Metabolism , Shoes , Walking/physiology , Adult , Biomechanical Phenomena , Female , Gait , Humans , Male
4.
AJNR Am J Neuroradiol ; 29(4): 816-22, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18339726

ABSTRACT

BACKGROUND AND PURPOSE: Hyperintensities on T2-weighted images are seen in the brains of most patients with neurofibromatosis type I (NF-1), but the origin of these unidentified bright objects (UBOs) remains obscure. In the current study, we examined the diffusion characteristics of brain tissue in children with NF-1 to test the hypothesis that a microstructural abnormality is present in NF-1. MATERIALS AND METHODS: Diffusion tensor imaging (DTI) was performed in 50 children with NF-1 and 8 controls. Circular regions of interest were manually placed in 7 standardized locations in both hemispheres, including UBO sites. Apparent diffusion coefficients (ADC), fractional anisotropy (FA), and axial anisotropy (A(m)) were used to differentiate quantitatively between healthy and disordered brain matter. Differences in eigenvalues (lambda(1), lambda(2), lambda(3)) were determined to examine parenchymal integrity. RESULTS: We found higher ADC values for UBOs than for normal-appearing sites (P < .01) and higher ADC values for normal-appearing sites than for controls (P < .04 in 5 of 7 regions). In most regions, we found no differences in FA or A(m). Eigenvalues lambda(2) and lambda(3) were higher at UBO sites than in normal-appearing sites (P < .04). CONCLUSION: With ADC, it was possible to differentiate quantitatively between normal- and abnormal-appearing brain matter in NF-1 and also between normal-appearing brain matter in NF-1 and healthy brain matter in controls, indicating subtle pathologic damage disrupting the tissue microstructure in the NF-1 brain. Higher diffusivity for lambda(1), lambda(2), and lambda(3) indicates that this disturbance of microstructure is caused by accumulation of fluid or vacuolation.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging , Neurofibromatosis 1/pathology , Adolescent , Child , Female , Humans , Male , Observer Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...