Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 95(8): e10914, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37494966

ABSTRACT

This study demonstrates a comparison of energy usage, land footprint, and volumetric requirements of municipal wastewater treatment with aerobic granular sludge (AGS) and conventional activated sludge (CAS) at a full-scale wastewater treatment plant characterized by large fluctuations in nutrient loadings and temperature. The concentration of organic matter in the influent to the AGS was increased by means of hydrolysis and bypassing the pre-settler. Both treatment lines produced effluent concentrations below 5 mg BOD7 L-1 , 10 mg TN L-1 , and 1 mg TP L-1 , by enhanced biological nitrogen- and phosphorus removal. In this case study, the averages of volumetric energy usage over 1 year were 0.22 ± 0.08 and 0.26 ± 0.07 kWh m-3 for the AGS and CAS, respectively. A larger difference was observed for the energy usage per reduced population equivalents (P.E.), which was on average 0.19 ± 0.08 kWh P.E.-1 for the AGS and 0.30 ± 0.08 kWh P.E.-1 for the CAS. However, both processes had the potential for decreased energy usage. Over 1 year, both processes showed similar fluctuations in energy usage, related to variations in loading, temperature, and DO. The AGS had a lower specific area, 0.3 m2  m-3 d-1 , compared to 0.6 m2  m-3 d-1 of the CAS, and also a lower specific volume, 1.3 m3  m-3 d-1 compared to 2.0 m3  m-3 d-1 . This study confirms that AGS at full-scale can be compact and still have comparable energy usage as CAS. PRACTITIONER POINTS: Full-scale case study comparison of aerobic granular sludge (AGS) and conventional activated sludge (CAS), operated in parallel. AGS had 50 % lower footprint compared to CAS. Energy usage was lower in the AGS, but both processes had potential to improve the energy usage efficiency. Both processes showed low average effluent concentrations.


Subject(s)
Sewage , Wastewater , Waste Disposal, Fluid , Bioreactors , Nitrogen , Aerobiosis
2.
J Hazard Mater ; 438: 129528, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999740

ABSTRACT

Removal performances of organic micropollutants by conventional activated sludge (CAS) and aerobic granular sludge (AGS) were investigated at a full-scale wastewater treatment plant. Lab-scale kinetic experiments were performed to assess the micropollutant transformation rates under oxic and anoxic conditions. Transformation rates were used to model the micropollutant removal in the full-scale processes. Metagenomic sequencing was used to compare the microbial communities and antimicrobial resistance genes of the CAS and AGS systems. Higher transformation ability was observed for CAS compared to AGS for most compounds, both at the full-scale plant and in the complementary batch experiments. Oxic conditions supported the transformation of several micropollutants with faster and/or comparable rates compared to anoxic conditions. The estimated transformation rates from batch experiments adequately predicted the removal for most micropollutants in the full-scale processes. While the compositions in microbial communities differed between AGS and CAS, the full-scale biological reactors shared similar resistome profiles. Even though granular biomass showed lower potential for micropollutant transformation, AGS systems had somewhat higher gene cluster diversity compared to CAS, which could be related to a higher functional diversity. Micropollutant exposure to biomass or mass transfer limitations, therefore played more important roles in the observed differences in OMP removal.


Subject(s)
Sewage , Water Purification , Bioreactors , Waste Disposal, Fluid , Wastewater
3.
ACS Macro Lett ; 1(5): 618-622, 2012 May 15.
Article in English | MEDLINE | ID: mdl-35607073

ABSTRACT

The presence of γ-phase in isotactic polypropylene is well-known but, up until now, could only be induced by specific processing conditions or material modifications. Typically, for Ziegler-Natta (ZN) iPPs pressures of 2000 bar are required, otherwise, metallocene (M) iPPs and copolymerization using olefin-type counits should be used. Here we show that crystallization under the unique combination of moderate pressure (p ≥ 900 bar) and strong shear flow oriented specimens with high contents of γ-phase are created in ZN-iPPs. The oriented morphology is qualified as a shish-kebab structure that templates densely branched γ-lamellae on parent α-lamellae as well as directly to the shish backbone.

SELECTION OF CITATIONS
SEARCH DETAIL
...