Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 5(9): 1019-1022, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-35614638

ABSTRACT

Despite significant efforts, the design of alkoxyamines for polymerization of methacrylic monomers in a well-controlled fashion with good retention of the active chain ends remains a challenge. Herein, the facile synthesis of several alkoxyamines, which are capable of achieving this long sought-after goal, is reported. Controlled homopolymerization of methyl methacrylate is achieved as determined by a linear increase in molecular weight with conversion and first-order rate plots for various alkoxyamine concentrations. The versatility of the alkoxyamines is further exemplified by the ability to control the homopolymerization of styrene and by synthesis of a block copolymer of a second methacrylate in an efficient chain extension process.

2.
J Colloid Interface Sci ; 237(1): 21-27, 2001 May 01.
Article in English | MEDLINE | ID: mdl-11334510

ABSTRACT

The synthesis and characterization of a new type of chain-transfer-active surfactant (i.e., TRANSURF) is reported. The compound was designed on the basis of the chemistry of macromers, which undergo free-radical chain-transfer addition-fragmentation reactions. In effect this allows incorporation of the surfactant molecule into the polymer backbone, and thus reduces the influence of surfactant migration during film formation. Surfactants of this type, containing two hydrophilic head groups, can have a marked influence on the polymer and latex properties (e.g., molecular weight distributions and particle size). Characterization of the physical properties of this surfactant was therefore carried out using surface tension, conductivity, and fluorescence techniques. Because of the surfactant's unusual "bolaform" (alpha, omega) (Zana, R., in "Structure-Performance Relationships in Surfactants" (K. Esumi and M. Ueno, Eds.), Surfactant Science Series 70, Dekker, New York, 1997) structure the micelle formation process has been found to be quite different from that of the conventional surfactant, sodium dodecyl sulfate (SDS). From the surface tension data a flat molecular conformation was evident at 1x10(-3) mol dm(-3) (131 Å(2) surface area), which we assumed to correspond to the low aggregation number of premicellar aggregates. There is evidence to suggest formation of a larger volume of the microdomains in these micelles compared to that in SDS. At higher TRANSURF concentrations, however, we find no clear indication of a switch to a "wicket"-type conformation, although such conformational changes cannot be ruled out. Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...