Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Dev Biol ; 9: 66, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20003423

ABSTRACT

BACKGROUND: The exocrine pancreas is composed of a branched network of ducts connected to acini. They are lined by a monolayered epithelium that derives from the endoderm and is surrounded by mesoderm-derived mesenchyme. The morphogenic mechanisms by which the ductal network is established as well as the signaling pathways involved in this process are poorly understood. RESULTS: By morphological analyzis of wild-type and mutant mouse embryos and using cultured embryonic explants we investigated how epithelial morphogenesis takes place and is regulated by chemokine signaling. Pancreas ontogenesis displayed a sequence of two opposite epithelial transitions. During the first transition, the monolayered and polarized endodermal cells give rise to tissue buds composed of a mass of non polarized epithelial cells. During the second transition the buds reorganize into branched and polarized epithelial monolayers that further differentiate into tubulo-acinar glands. We found that the second epithelial transition is controlled by the chemokine Stromal cell-Derived Factor (SDF)-1. The latter is expressed by the mesenchyme, whereas its receptor CXCR4 is expressed by the epithelium. Reorganization of cultured pancreatic buds into monolayered epithelia was blocked in the presence of AMD3100, a SDF-1 antagonist. Analyzis of sdf1 and cxcr4 knockout embryos at the stage of the second epithelial transition revealed transient defective morphogenesis of the ventral and dorsal pancreas. Reorganization of a globular mass of epithelial cells in polarized monolayers is also observed during submandibular glands development. We found that SDF-1 and CXCR4 are expressed in this organ and that AMD3100 treatment of submandibular gland explants blocks its branching morphogenesis. CONCLUSION: In conclusion, our data show that the primitive pancreatic ductal network, which is lined by a monolayered and polarized epithelium, forms by remodeling of a globular mass of non polarized epithelial cells. Our data also suggest that SDF-1 controls the branching morphogenesis of several exocrine tissues.


Subject(s)
Chemokine CXCL12/metabolism , Morphogenesis , Pancreas/embryology , Submandibular Gland/embryology , Animals , Benzylamines , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/genetics , Cyclams , Epithelium/embryology , Heterocyclic Compounds/pharmacology , In Vitro Techniques , Mice , Mice, Knockout , Pancreas/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Submandibular Gland/metabolism
2.
Gene Expr Patterns ; 6(4): 353-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16446123

ABSTRACT

Pancreas development involves branching morphogenesis concomitantly to differentiation of endocrine, exocrine and ductal cell types from a single population of pancreatic precursors. These processes depend on many signals and factors that also control development of the central nervous system. In the latter, Eph receptors and their class-A (GPI-anchored) and class-B (transmembrane) ephrin ligands control cell migration and axon-pathfinding, help establish regional patterns and act as labels for cell positioning. This raised the question as to whether and where Ephs and ephrins are expressed during pancreas development. Here we have identified the Eph and ephrin genes that are expressed in mouse embryonic pancreas, as detected by RT-PCR analysis. In situ hybridization experiments showed that Ephs and ephrins are mainly expressed in the burgeoning structures of the epithelium which differentiate into exocrine acini. Binding experiments on whole pancreas demonstrated the presence of functional Eph receptors. They showed that EphBs are expressed by the pancreatic epithelium at embryonic day (e) 12.5 and that, from e14.5 on, Ephs of both classes are expressed by the pancreatic epithelium and then become restricted to developing acini. We conclude that specific members of the Eph/ephrin family are expressed in embryonic pancreas according to a dynamic temporal and regional pattern.


Subject(s)
Ephrins/metabolism , Pancreas/growth & development , Pancreas/metabolism , Receptors, Eph Family/metabolism , Animals , Ephrins/classification , Ephrins/genetics , Gene Expression Regulation, Developmental , Immunohistochemistry , In Situ Hybridization , Ligands , Mice , Morphogenesis , Pancreas/cytology , Pancreas/enzymology , Receptors, Eph Family/genetics , Reverse Transcriptase Polymerase Chain Reaction
3.
J Cell Sci ; 117(Pt 10): 2077-86, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15054113

ABSTRACT

The pancreas develops from the endoderm to give rise to ducts, acini and islets of Langerhans. This process involves extracellular signals of the Transforming Growth Factor beta (TGFbeta) family. The aim of this work was to study the effects of activin A, a member of this family, whose potential role in pancreas differentiation is controversial. To this end, we used pancreatic explants from E12.5 mouse embryos. In culture these explants exhibited spontaneous growth, epithelial morphogenesis and endocrine and exocrine differentiation. Exposure to activin A did not affect exocrine or endocrine differentiation. Surprisingly, activin A induced in the explants the appearance of a large contractile structure surrounded by a cylindrical epithelium, a thick basal lamina and a smooth muscle layer. This structure, the formation of which was prevented by follistatin, was typical of an intestinal wall. Consistent with this interpretation, activin A rapidly induced in the explants the mRNAs for fatty acid binding proteins (FABPs), which are markers of the intestine, but not of the pancreas. We also found that induction of the FABPs was preceded by induction of Sonic hedgehog (Shh), a known inducer of intestinal differentiation in the endoderm. Activin B induced neither Shh nor intestinal differentiation. The activin A-mediated intestinal differentiation was blocked by cyclopamine, an inhibitor of Hedgehog signaling, and it was mimicked by Shh. We conclude that activin A does not appear to affect the exocrine or endocrine components of the pancreas, but that it can promote differentiation of pancreatic tissue into intestine via a Shh-dependent mechanism. These findings illustrate the plasticity of differentiation programs in response to extracellular signals in the pancreas and they shed new light on the regulation of pancreas and intestinal development.


Subject(s)
Activins/physiology , Inhibin-beta Subunits/physiology , Intestinal Mucosa/metabolism , Intestines/embryology , Pancreas/embryology , Pancreas/metabolism , Trans-Activators/metabolism , Activins/chemistry , Activins/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Differentiation , Fatty Acid-Binding Proteins , Hedgehog Proteins , Inhibin-beta Subunits/chemistry , Inhibin-beta Subunits/metabolism , Mice , Microscopy, Fluorescence , RNA/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Time Factors , Transforming Growth Factor beta/metabolism , Veratrum Alkaloids/pharmacology
4.
Gene Expr Patterns ; 3(5): 639-44, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12971999

ABSTRACT

Onecut (OC) transcription factors are evolutionarily conserved proteins with important developmental functions. They contain a bipartite DNA-binding domain composed of a single cut domain associated with a divergent homeodomain. The human genome contains three Onecut paralogues, Hnf6 (also called Oc1), Oc2 and Oc3. We describe here the cloning of mouse (m) OC-2 and its expression pattern in the mouse embryo. The mOc2 gene was localized on chromosome 18. Analysis of the mOC-2 amino acid sequence revealed overall identities of 67% with mHNF-6 and of 56% with mOC-3, and the presence of functional domains delineated earlier in HNF-6. The sequence of the 153 residue-long cut-homeodomain was very conserved, as it was 92% identical to that of mHNF-6 and 89% identical to that of mOC-3. In situ hybridization showed expression of mOc2 in the developing nervous system and gut endoderm. Like Hnf6, Oc2 was expressed in developing liver and pancreas. As many genes that are targeted by Onecut factors are recognized by both OC-2 and HNF-6, this overlap of expression patterns may have functional implications.


Subject(s)
Homeodomain Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , Conserved Sequence , Gene Expression Regulation, Developmental , Liver/embryology , Liver/metabolism , Mice , Molecular Sequence Data , Nervous System/embryology , Nervous System/metabolism , Pancreas/embryology , Pancreas/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...