Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(22): 15563-15572, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36214158

ABSTRACT

Agrochemicals frequently undergo various chemical and metabolic transformation reactions in the environment that often result in a wide range of derivates that must be comprehensively characterized to understand their toxicity profiles and their persistence and outcome in the environment. In the development phase, this typically involves a major effort in qualitatively identifying the correct chemical isomer(s) of these derivatives from the many isomers that could potentially be formed. Liquid chromatography-mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy are often used in attempts to characterize such environment transformation products. However, challenges in confidently correlating chemical structures to detected compounds in mass spectrometry data and sensitivity/selectivity limitations of NMR frequently lead to bottlenecks in identification. In this study, we use an alternative approach, infrared ion spectroscopy, to demonstrate the identification of hydroxylated derivatives of two plant protection compounds (azoxystrobin and benzovindiflupyr) contained at low levels in tomato and spinach matrices. Infrared ion spectroscopy is an orthogonal tandem mass spectrometry technique that combines the sensitivity and selectivity of mass spectrometry with structural information obtained by infrared spectroscopy. Furthermore, IR spectra can be computationally predicted for candidate molecular structures, enabling the tentative identification of agrochemical derivatives and other unknowns in the environment without using physical reference standards.


Subject(s)
Agrochemicals , Tandem Mass Spectrometry , Chromatography, Liquid , Spectrophotometry, Infrared , Magnetic Resonance Spectroscopy/methods
2.
Anal Chem ; 93(4): 2687-2693, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33470107

ABSTRACT

The capability of an ion trap mass spectrometer to store ions for an arbitrary amount of time allows the use of a single infrared (IR) laser to perform two-color double resonance IR-IR spectroscopic experiments on mass-to-charge (m/z) selected ions. In this single-laser IR2MS3 scheme, one IR laser frequency is used to remove a selected set of isomers from the total trapped ion population and the second IR laser frequency, from the same laser, is used to record the IR spectrum of the remaining precursor ions. This yields isomer-specific vibrational spectra of the m/z-selected ions, which can reveal the structure and identity of the initially co-isolated isomeric species. The use of a single laser greatly reduces the experimental complexity of two-color IR2MS3 and enhances its application in fields employing analytical MS. In this work, we demonstrate the methodology by acquiring single-laser IR2MS3 spectra in a forensic context, identifying two previously unidentified isomeric novel psychoactive substances (NPS) from a sample that was confiscated by the Amsterdam Police.


Subject(s)
Infrared Rays , Lasers , Methamphetamine/analogs & derivatives , Psychotropic Drugs/chemistry , Spectrum Analysis/methods , Forensic Sciences , Molecular Structure
3.
Anal Chem ; 92(10): 7282-7288, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32286052

ABSTRACT

Infrared ion spectroscopy (IRIS), a mass-spectrometry-based technique exploiting resonant infrared multiple photon dissociation (IRMPD), has been applied for the identification of novel psychoactive substances (NPS). Identification of the precise isomeric forms of NPS is of significant forensic relevance since legal controls are dependent on even minor molecular differences such as a single ring-substituent position. Using three isomers of fluoroamphetamine and two ring-isomers of both MDA and MDMA, we demonstrate the ability of IRIS to distinguish closely related NPS. Computationally predicted infrared (IR) spectra are shown to correspond with experimental spectra and could explain the molecular origins of their distinctive IR absorption bands. IRIS was then used to investigate a confiscated street sample containing two unknown substances. One substance could easily be identified by comparison to the IR spectra of reference standards. For the other substance, however, this approach proved inconclusive due to incomplete mass spectral databases as well as a lack of available reference compounds, two common analytical limitations resulting from the rapid development of NPS. Most excitingly, the second unknown substance could nevertheless be identified by using computationally predicted IR spectra of several potential candidate structures instead of their experimental reference spectra.


Subject(s)
Psychotropic Drugs/analysis , Synthetic Drugs/analysis , Density Functional Theory , Mass Spectrometry , Molecular Structure , Spectrophotometry, Infrared , Stereoisomerism
4.
J Am Soc Mass Spectrom ; 31(2): 249-256, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32031404

ABSTRACT

Identification and confirmation of known as well as unknown (bio)chemical entities in ambient mass spectrometry (MS) and MS imaging (MSI) mostly involve accurate mass determination, often in combination with MS/MS or MSn work flows. To further improve structural assignment, additional molecular information is required. Here we present an ambient hydrogen/deuterium exchange (HDX) laser ablation electrospray ionization (LAESI) MS method in which, apart from the accurate mass and MS/MS data, the number of exchangeable protons in (un)known molecules is obtained. While eventually presenting ambient HDX-LAESI-MSI, samples were not preincubated with deuterated solvents, but instead HDX occurred following fusion of ablated sample material with microdroplets generated by ESI of deuterated solvents. Therefore, the degree of HDX was first studied following ablation of nondeuterated sample solutions of melamine and monosaccharides. From these experiments, it was concluded that the set-up used could provide meaningful HDX data in support of molecular structure elucidation by significantly reducing the number of structure options from a measured elemental composition. This reduction was demonstrated with an unknown accurate m/z value obtained in the analysis of an orange slice, reducing the possible number of molecular structures having the same elemental composition by 87% due to the number of H/D exchanges observed. Next, deuterated and nondeuterated MS/MS experiments showed the number of exchangeable protons in the substructures from deuterated neutral losses in the product ion spectra, confirming the compound to be arginine. Finally, the potential of ambient HDX-LAESI-MSI was demonstrated by the imaging of (secondary) plant metabolites in a Phalaenopsis petal.


Subject(s)
Deuterium Exchange Measurement/methods , Monosaccharides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Triazines/chemistry , Hydrogen/chemistry , Laser Therapy , Protons , Tandem Mass Spectrometry/methods
5.
J Am Soc Mass Spectrom ; 30(4): 639-646, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30617860

ABSTRACT

In drug discovery, it is important to identify phase I metabolic modifications as early as possible to screen for inactivation of drugs and/or activation of prodrugs. As the major class of reactions in phase I metabolism is oxidation reactions, oxidation of drugs with TiO2 photocatalysis can be used as a simple non-biological method to initially eliminate (pro)drug candidates with an undesired phase I oxidation metabolism. Analysis of reaction products is commonly achieved with mass spectrometry coupled to chromatography. However, sample throughput can be substantially increased by eliminating pretreatment steps and exploiting the potential of ambient ionization mass spectrometry (MS). Furthermore, online monitoring of reactions in a time-resolved way would identify sequential modification steps. Here, we introduce a novel (time-resolved) TiO2-photocatalysis laser ablation electrospray ionization (LAESI) MS method for the analysis of drug candidates. This method was proven to be compatible with both TiO2-coated glass slides as well as solutions containing suspended TiO2 nanoparticles, and the results were in excellent agreement with studies on biological oxidation of verapamil, buspirone, testosterone, andarine, and ostarine. Finally, a time-resolved LAESI MS setup was developed and initial results for verapamil showed excellent analytical stability for online photocatalyzed oxidation reactions within the set-up up to at least 1 h. Graphical Abstract.


Subject(s)
Pharmaceutical Preparations/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Titanium/chemistry , Acetamides/chemistry , Aminophenols/chemistry , Androgen Antagonists/chemistry , Androgens/chemistry , Anilides/chemistry , Anti-Anxiety Agents/chemistry , Anti-Arrhythmia Agents/chemistry , Buspirone/chemistry , Catalysis , Equipment Design , Humans , Laser Therapy/instrumentation , Laser Therapy/methods , Lasers , Light , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/instrumentation , Verapamil/chemistry
6.
Anal Chem ; 90(17): 10409-10416, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30063331

ABSTRACT

Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.

7.
Anal Chem ; 89(7): 4031-4037, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28252942

ABSTRACT

Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...