Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 12: 660870, 2021.
Article in English | MEDLINE | ID: mdl-33868355

ABSTRACT

Plants are very effective in responding to environmental changes during competition for light and nutrients. Low Red:Far-Red (low R:FR)-mediated neighbor detection allows plants to compete successfully with other plants for available light. This above-ground signal can also reduce lateral root growth by inhibiting lateral root emergence, a process that might help the plant invest resources in shoot growth. Nitrate is an essential nutrient for plant growth and Arabidopsis thaliana responds to low nitrate conditions by enhancing nutrient uptake and reducing lateral and main root growth. There are indications that low R:FR signaling and low nitrate signaling can affect each other. It is unknown which response is prioritized when low R:FR light- and low nitrate signaling co-occur. We investigated the effect of low nitrate conditions on the low R:FR response of the A. thaliana root system in agar plate media, combined with the application of supplemental Far-Red (FR) light to the shoot. We observed that under low nitrate conditions main and lateral root growth was reduced, but more importantly, that the response of the root system to low R:FR was not present. Consistently, a loss-of-function mutant of a nitrate transporter gene NRT2.1 lacked low R:FR-induced lateral root reduction and its root growth was hypersensitive to low nitrate. ELONGATED HYPOCOTYL5 (HY5) plays an important role in the root response to low R:FR and we found that it was less sensitive to low nitrate conditions with regards to lateral root growth. In addition, we found that low R:FR increases NRT2.1 expression and that low nitrate enhances HY5 expression. HY5 also affects NRT2.1 expression, however, it depended on the presence of ammonium in which direction this effect was. Replacing part of the nitrogen source with ammonium also removed the effect of low R:FR on the root system, showing that changes in nitrogen sources can be crucial for root plasticity. Together our results show that nitrate signaling can repress low R:FR responses and that this involves signaling via HY5 and NRT2.1.

3.
Curr Biol ; 31(9): 1918-1930.e5, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33705718

ABSTRACT

Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Cell Polarity , Gene Expression Regulation, Plant , Indoleacetic Acids , Membrane Transport Proteins/genetics , Plant Cells/metabolism , Plant Roots/metabolism
5.
Front Plant Sci ; 12: 777119, 2021.
Article in English | MEDLINE | ID: mdl-34975959

ABSTRACT

Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.

6.
Plant Physiol ; 184(2): 570-571, 2020 10.
Article in English | MEDLINE | ID: mdl-33020326

Subject(s)
Etiolation , Light
7.
Plant Physiol ; 184(4): 2137-2153, 2020 12.
Article in English | MEDLINE | ID: mdl-33051265

ABSTRACT

Plants detect proximity of competitors through reduction in the ratio between red and far-red light that triggers the shade avoidance syndrome, inducing responses such as accelerated shoot elongation and early flowering. Shade avoidance is regulated by PHYTOCHROME INTERACTING FACTORs, a group of basic helix-loop-helix (bHLH) transcription factors. Another (b)HLH protein, KIDARI (KDR), which is non-DNA-binding, was identified in de-etiolation studies and proposed to interact with LONG HYPOCOTYL IN FAR-RED1 (HFR1), a (b)HLH protein that inhibits shade avoidance. Here, we established roles of KDR in regulating shade avoidance in Arabidopsis (Arabidopsis thaliana) and investigated how KDR regulates the shade avoidance network. We showed that KDR is a positive regulator of shade avoidance and interacts with several negative growth regulators. We identified KDR interactors using a combination of yeast two-hybrid screening and dedicated confirmations with bimolecular fluorescence complementation. We demonstrated that KDR is translocated primarily to the nucleus when coexpressed with these interactors. A genetic approach confirmed that several of these interactions play a functional role in shade avoidance; however, we propose that KDR does not interact with HFR1 to regulate shade avoidance. Based on these observations, we propose that shade avoidance is regulated by a three-layered gas-and-brake mechanism of bHLH protein interactions, adding a layer of complexity to what was previously known.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Light , Phytochrome/genetics , Phytochrome/metabolism , Gene Expression Regulation, Plant
8.
Plant Physiol ; 184(1): 4-5, 2020 09.
Article in English | MEDLINE | ID: mdl-32900970
10.
Nat Plants ; 6(5): 438-439, 2020 05.
Article in English | MEDLINE | ID: mdl-32284550

Subject(s)
Arabidopsis , RNA
12.
Curr Biol ; 29(10): 1669-1676.e4, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31056387

ABSTRACT

Global food production is set to keep increasing despite a predicted decrease in total arable land [1]. To achieve higher production, denser planting will be required on increasingly degraded soils. When grown in dense stands, crops elongate and raise their leaves in an effort to reach sunlight, a process termed shade avoidance [2]. Shade is perceived by a reduction in the ratio of red (R) to far-red (FR) light and results in the stabilization of a class of transcription factors known as PHYTOCHROME INTERACTING FACTORS (PIFs) [3, 4]. PIFs activate the expression of auxin biosynthesis genes [4, 5] and enhance auxin sensitivity [6], which promotes cell-wall loosening and drives elongation growth. Despite our molecular understanding of shade-induced growth, little is known about how this developmental program is integrated with other environmental factors. Here, we demonstrate that low levels of NaCl in soil strongly impair the ability of plants to respond to shade. This block is dependent upon abscisic acid (ABA) signaling and the canonical ABA signaling pathway. Low R:FR light enhances brassinosteroid (BR) signaling through BRASSINOSTEROID SIGNALING KINASE 5 (BSK5) and leads to the activation of BRI1 EMS SUPPRESSOR 1 (BES1). ABA inhibits BSK5 upregulation and interferes with GSK3-like kinase inactivation by the BR pathway, thus leading to a suppression of BES1:PIF function. By demonstrating a link between light, ABA-, and BR-signaling pathways, this study provides an important step forward in our understanding of how multiple environmental cues are integrated into plant development.


Subject(s)
Arabidopsis/growth & development , Light , Salinity , Sodium Chloride/metabolism , Soil/chemistry , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction
13.
Trends Plant Sci ; 23(10): 865-873, 2018 10.
Article in English | MEDLINE | ID: mdl-30037654

ABSTRACT

Plants use light as a signal to determine neighbour proximity in dense vegetation. Far-red (FR) light reflected from neighbour plants elicits an array of growth responses throughout the plant. Recently, various light quality-induced signals have been discovered that travel between organs and tissue layers. These signals share upstream and downstream components, but can have opposing effects on cell growth. The question is how plants can coordinate these spatial signals into various growth responses in remote tissues. This coordination allows plants to adapt to the environment, and understanding the underlying mechanisms could allow precision engineering of crops. To achieve this understanding, plant photobiology research will need to focus increasingly on spatial signalling at the whole-plant level.


Subject(s)
Light , Phototrophic Processes/physiology , Plant Physiological Phenomena , Signal Transduction , Spatial Analysis , Crops, Agricultural
14.
Plant Cell ; 30(1): 101-116, 2018 01.
Article in English | MEDLINE | ID: mdl-29321188

ABSTRACT

Plants in dense vegetation compete for resources and detect competitors through reflection of far-red (FR) light from surrounding plants. This reflection causes a reduced red (R):FR ratio, which is sensed through phytochromes. Low R:FR induces shade avoidance responses of the shoot and also changes the root system architecture, although this has received little attention so far. Here, we investigate the molecular mechanisms through which light detection in the shoot regulates root development in Arabidopsis thaliana We do so using a combination of microscopy, gene expression, and mutant study approaches in a setup that allows root imaging without exposing the roots to light treatment. We show that low R:FR perception in the shoot decreases the lateral root (LR) density by inhibiting LR emergence. This decrease in LR emergence upon shoot FR enrichment is regulated by phytochrome-dependent accumulation of the transcription factor ELONGATED HYPOCOTYL5 (HY5) in the LR primordia. HY5 regulates LR emergence by decreasing the plasma membrane abundance of PIN-FORMED3 and LIKE-AUX1 3 auxin transporters. Accordingly, FR enrichment reduces the auxin signal in the overlaying cortex cells, and this reduces LR outgrowth. This shoot-to-root communication can help plants coordinate resource partitioning under competition for light in high density fields.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/radiation effects , Basic-Leucine Zipper Transcription Factors/metabolism , Light , Nuclear Proteins/metabolism , Plant Roots/growth & development , Plant Roots/radiation effects , Plant Shoots/radiation effects , Arabidopsis/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Hypocotyl/metabolism , Indoleacetic Acids/pharmacology , Models, Biological , Mutation/genetics , Phenotype , Phytochrome/metabolism , Recombinant Fusion Proteins/metabolism
16.
Mol Plant ; 9(6): 857-69, 2016 06 06.
Article in English | MEDLINE | ID: mdl-26995296

ABSTRACT

Seed dispersal is an important moment in the life cycle of a plant species. In Arabidopsis thaliana, it is dependent on transcription factor INDEHISCENT (IND)-mediated specification of a separation layer in the dehiscence zone found in the margin between the valves (carpel walls) and the central replum of the developing fruit. It was proposed that IND specifies the separation layer by inducing a local auxin minimum at late stages of fruit development. Here we show that morphological differences between the ind mutant and wild-type fruit already arise at early stages of fruit development, coinciding with strong IND expression in the valve margin. We show that IND-reduced PIN-FORMED3 (PIN3) auxin efflux carrier abundance leads to an increased auxin response in the valve margin during early fruit development, and that the concomitant cell divisions that form the dehiscence zone are lacking in ind mutant fruit. Moreover, IND promoter-driven ectopic expression of the AGC kinases PINOID (PID) and WAG2 induced indehiscence by expelling auxin from the valve margin at stages 14-16 of fruit development through increased PIN3 abundance. Our results show that IND, besides its role at late stages of Arabidopsis fruit development, functions at early stages to facilitate the auxin-triggered cell divisions that form the dehiscence zone.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fruit/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
17.
Plant Physiol ; 160(2): 944-54, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22904163

ABSTRACT

The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.


Subject(s)
Disease Resistance , Helminth Proteins/metabolism , Nematoda/pathogenicity , Proteins/metabolism , Solanum lycopersicum/immunology , Amino Acid Sequence , Animals , Cell Death , Chromatin Immunoprecipitation , Cloning, Molecular , Genes, Plant , Genetic Vectors , Helminth Proteins/genetics , Helminth Proteins/immunology , Host-Parasite Interactions , Leucine-Rich Repeat Proteins , Solanum lycopersicum/genetics , Solanum lycopersicum/parasitology , Molecular Sequence Data , Nematoda/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/immunology , Plants, Genetically Modified/parasitology , Potexvirus/immunology , Potexvirus/pathogenicity , Protein Interaction Mapping , Proteins/genetics , Signal Transduction , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/parasitology , Transformation, Genetic , Verticillium/immunology , Verticillium/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...