Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ISME J ; 17(12): 2290-2302, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37872274

ABSTRACT

Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.


Subject(s)
Bacteria , Ecosystem , Antarctic Regions , Bacteria/genetics , Soil/chemistry , Plants , Carbon
2.
Sci Total Environ ; 851(Pt 1): 158243, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36007637

ABSTRACT

Plants may slow global warming through enhanced growth, because increased levels of photosynthesis stimulate the land carbon (C) sink. However, how climate warming affects plant C storage globally and key drivers determining the response of plant C storage to climate warming remains unclear, causing uncertainty in climate projections. We performed a comprehensive meta-analysis, compiling 393 observations from 99 warming studies to examine the global patterns of plant C storage responses to climate warming and explore the key drivers. Warming significantly increased total biomass (+8.4 %), aboveground biomass (+12.6 %) and belowground biomass (+10.1 %). The effect of experimental warming on plant biomass was best explained by the availability of soil nitrogen (N) and water. Across the entire dataset, warming-induced changes in total, aboveground and belowground biomass all positively correlated with soil C:N ratio, an indicator of soil N availability. In addition, warming stimulated plant biomass more strongly in humid than in dry ecosystems, and warming tended to decrease root:shoot ratios at high soil C:N ratios. Together, these results suggest dual controls of warming effects on plant C storage; warming increases plant growth in ecosystems where N is limiting plant growth, but it reduces plant growth where water availability is limiting plant growth.


Subject(s)
Carbon , Nitrogen , Biomass , Ecosystem , Nitrogen/analysis , Plants , Soil , Water/analysis
3.
Glob Chang Biol ; 28(1): 128-139, 2022 01.
Article in English | MEDLINE | ID: mdl-34587352

ABSTRACT

The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response-reduced growth-was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon-specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long-term experimental warming also reduced soil carbon content, likely a consequence of a warming-induced increase in decomposition, as warming-induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long-term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.


Subject(s)
Microbiota , Soil , Carbon , Climate Change , Ecosystem , Grassland , Soil Microbiology
4.
BMC Ecol ; 20(1): 33, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32532338

ABSTRACT

BACKGROUND: The monarch butterfly (Danaus plexippus) is a conspicuous insect that has experienced a drastic population decline over the past two decades. While there are several factors contributing to dwindling monarch populations, habitat loss is considered the most significant threat to monarchs. In the United States, loss of milkweed, particularly in the Midwest, has greatly reduced the available breeding habitat of monarchs. This has led to extensive efforts to conserve and restore milkweed resources throughout the Midwest. Recently, these research and conservation efforts have been expanded to include other important areas along the monarch's migratory path. RESULTS: During the fall of 2018, we conducted surveys of monarch eggs and larvae through West Texas. We documented monarch and queen butterfly (Danaus gilippus) reproduction throughout the region and used the proportion of monarch and queen larva to estimate the number of monarch eggs. Peak egg densities for monarchs were as high as 0.78 per milkweed ramet after correction for the presence of queens. Despite our observations encompassing only a limited sample across one season, the peak monarch egg densities we observed exceeded published reports from when monarch populations were higher. CONCLUSIONS: To our knowledge, this is the first study to correct for the presence of queens when calculating the density of monarch eggs. This research also provides insight into monarch utilization of less well-known regions, such as West Texas, and highlights the need to expand the scope of monarch monitoring and conservation initiatives. While the importance of monarch research and conservation in the Midwest is unquestionable, more comprehensive efforts may identify new priorities in monarch conservation and lead to a more robust and effective overall strategy, particularly given the dynamic and rapidly changing global environment.


Subject(s)
Butterflies , Animal Migration , Animals , Population Dynamics , Prevalence , Seasons , Texas , United States
5.
Glob Chang Biol ; 26(4): 2280-2291, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997534

ABSTRACT

The western Antarctic Peninsula is an extreme low temperature environment that is warming rapidly due to global change. Little is known, however, on the temperature sensitivity of growth of microbial communities in Antarctic soils and in the surrounding oceanic waters. This is the first study that directly compares temperature adaptation of adjacent marine and terrestrial bacteria in a polar environment. The bacterial communities in the ocean were adapted to lower temperatures than those from nearby soil, with cardinal temperatures for growth in the ocean being the lowest so far reported for microbial communities. This was reflected in lower minimum (Tmin ) and optimum temperatures (Topt ) for growth in water (-17 and +20°C, respectively) than in soil (-11 and +27°C), with lower sensitivity to changes in temperature (Q10 ; 0-10°C interval) in Antarctic water (2.7) than in soil (3.9). This is likely due to the more stable low temperature conditions of Antarctic waters than soils, and the fact that maximum in situ temperatures in water are lower than in soils, at least in summer. Importantly, the thermally stable environment of Antarctic marine water makes it feasible to create a single temperature response curve for bacterial communities. This would thus allow for calculations of temperature-corrected growth rates, and thereby quantifying the influence of factors other than temperature on observed growth rates, as well as predicting the effects of future temperature increases on Antarctic marine bacteria.

6.
Methods Mol Biol ; 2046: 137-149, 2019.
Article in English | MEDLINE | ID: mdl-31407302

ABSTRACT

Quantitative stable isotope probing (qSIP) measures rates of taxon-specific element assimilation in intact microbial communities, utilizing substrates labeled with a heavy isotope.The laboratory protocol for qSIP is nearly identical to that for conventional stable isotope probing, with two key additions: (1) in qSIP, qPCR measurements are conducted on each density fraction recovered after isopycnic separation, and (2) in qSIP, multiple density fractions are sequenced spanning the entire range of densities over which nucleic acids were recovered. qSIP goes beyond identifying taxa assimilating a substrate, as it also allows for measuring that assimilation for each taxon within a given microbial community. Here, we describe an analysis process necessary to determine atom fraction excess of a heavy stable isotope added to an environmental sample for a given taxon's DNA.


Subject(s)
DNA Probes/metabolism , DNA, Bacterial/genetics , Isotope Labeling/methods , Microbiota/genetics , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Classification , DNA, Bacterial/metabolism , Environmental Microbiology , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Oxygen Isotopes/analysis , Oxygen Isotopes/metabolism
8.
FEMS Microbiol Ecol ; 93(10)2017 10 01.
Article in English | MEDLINE | ID: mdl-28961955

ABSTRACT

Aridisols are the dominant soil type in drylands, which occupy one-third of Earth's terrestrial surface. We examined controls on biogeographical patterns of Aridisol prokaryotic (bacterial and archaeal) communities at a regional scale by comparing communities from 100 Aridisols throughout the southwestern United States using high-throughput sequencing of the 16S rRNA gene. We found that microbial communities differed among global biomes and deserts of the Southwest. Differences among biomes were driven by differences in taxonomic identities, whereas differences among deserts of the Southwest were driven by differences in relative sequence abundance. Desert communities were dominated by Actinobacteria, Proteobacteria and Crenarchaeota, supporting the notion of a core set of abundant taxa in desert soils. Our findings contrast with studies showing little taxonomic overlap at the OTU level (97% sequence similarity) across large spatial scales, as we found ∼90% of taxa in at least two of the three deserts. Geographic distance structured prokaryotic communities indirectly through the influence of climate and soil properties. Structural equation modeling suggests that climate exerts a stronger influence than soil properties in shaping the composition of Aridisol microbial communities, with annual heat moisture index (an aridity metric) being the strongest climate driver. Annual heat moisture index was associated with decreased microbial diversity and richness. If the Desert Southwest becomes hotter and drier as predicted, these findings suggest that prokaryotic diversity and richness in Aridisols will decline.


Subject(s)
Actinobacteria/genetics , Crenarchaeota/genetics , Desert Climate , Proteobacteria/genetics , Soil Microbiology , Soil/chemistry , Actinobacteria/classification , Actinobacteria/isolation & purification , Biodiversity , Crenarchaeota/classification , Crenarchaeota/isolation & purification , Ecosystem , Hot Temperature , Microbiota/genetics , Proteobacteria/classification , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Southwestern United States
9.
Sci Adv ; 3(4): e1601880, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28435876

ABSTRACT

Carbon storage by ecosystems is valuable for climate protection. Biodiversity conservation may help increase carbon storage, but the value of this influence has been difficult to assess. We use plant, soil, and ecosystem carbon storage data from two grassland biodiversity experiments to show that greater species richness increases economic value: Increasing species richness from 1 to 10 had twice the economic value of increasing species richness from 1 to 2. The marginal value of each additional species declined as species accumulated, reflecting the nonlinear relationship between species richness and plant biomass production. Our demonstration of the economic value of biodiversity for enhancing carbon storage provides a foundation for assessing the value of biodiversity for decisions about land management. Combining carbon storage with other ecosystem services affected by biodiversity may well enhance the economic arguments for conservation even further.

10.
ISME J ; 10(9): 2336-40, 2016 09.
Article in English | MEDLINE | ID: mdl-26943624

ABSTRACT

Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Biological Evolution , Carbon Isotopes/analysis , Ecology , Ecosystem , Oxygen Isotopes/analysis , Phenotype , Phylogeny
11.
Oecologia ; 180(1): 265-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26391383

ABSTRACT

High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.


Subject(s)
Desert Climate , Ecosystem , Nitrogen/analysis , Seasons , Soil Microbiology , Soil/chemistry , Temperature , Biomass , Carbon/analysis , Nitrogen Cycle , Rain , Water
12.
Appl Environ Microbiol ; 81(21): 7570-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26296731

ABSTRACT

Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biota , Environmental Microbiology , Isotope Labeling/methods , Bacteria/chemistry , Bacteria/genetics , Centrifugation, Density Gradient , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Sequence Analysis, DNA
13.
Nature ; 517(7534): 365-8, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25337882

ABSTRACT

One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Crops, Agricultural/growth & development , Climate , Climate Change , Efficiency , Food Supply , Rain , Soil
14.
Oecologia ; 167(2): 339-54, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21516309

ABSTRACT

During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization, and partitioning influence the responsiveness of these desert shrubs during long-term exposure to elevated [CO(2)].


Subject(s)
Ambrosia/physiology , Carbon Dioxide/metabolism , Carbon/metabolism , Larrea/physiology , Photosynthesis , Analysis of Variance , Carbon/analysis , Carbon Dioxide/analysis , Environment , Multivariate Analysis , Nevada , Plant Leaves/physiology , Seasons
15.
Oecologia ; 151(4): 704-18, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17180661

ABSTRACT

Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO(2) and H(2)O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO(2) and H(2)O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO(2) and H(2)O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO(2) m(-2) s(-1) ground area day(-1). As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO(2) during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Plant Leaves/metabolism , Soil/analysis , Water/metabolism , Asparagaceae/metabolism , Poaceae/metabolism , Rain , Seasons , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...