Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 44(10): 5450-5456, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28710805

ABSTRACT

PURPOSE: Due to variations in biological half-life, accurate thyroid dosimetry for I-131 therapy is not trivial in clinical practice. In recent publications, systems are described to measure the uptake of I-131 in the thyroid repeatedly over time. In this work, we present a method to calculate patient specific pharmacokinetics and absorbed dose using such a collar detector system (CoTI) in combination with a SPECT acquisition and a two-compartment model fit. METHODS: For three patients receiving I-131 therapy for benign thyroid conditions, the complete uptake profile is measured over a period of 15 to 25 days after administration. A SPECT measurement is performed to assess the functional volume of the thyroid and the amount of I-131 in the thyroid. The uptake profile measured in counts-per-second is converted to absolute activity in MBq using the absolute quantification of the SPECT. A two-compartment model is used as a fit to the uptake data of the thyroid and to estimate the activity in the blood-pool. The estimated absorbed dose to the thyroid is then calculated from the integral of the activity. The assessed parameters from the method (6- and 24-h uptake, thyroid volume and I-131 uptake concentration) are compared with the values as determined in clinical practice. Furthermore, the convergence of the calculated absorbed dose as a function of measurement series duration is determined to assess the required measurement duration of the uptake profile. RESULTS: The two-compartment model fit shows a good agreement with the measured data points. Resulting dynamic uptake profiles of the three patients differ from each other. The uptake percentages differ from the pretherapy I-123 uptake measurements that are used in usual clinical practice, which shows the potential added value of the proposed method. The duration of the required measurement series appears to be patient dependent and therefore needs to be determined for each patient individually. The proposed method allows for a basic investigation of the individual dynamic uptake profile of I-131 in the thyroid and the calculation of the absorbed dose. CONCLUSIONS: The proposed measurement method is feasible and easily implementable given a system that can measure the uptake of I-131 in the thyroid repeatedly over time. The observed differences in dynamic uptake profiles and the differences in the absorbed thyroid dose as calculated with our method and the parameters of the usual clinical care support the relevance of the proposed method. In future studies, this approach may possibly be used for outcome prediction and therapeutic activity optimization.


Subject(s)
Image Processing, Computer-Assisted , Radiation Dosage , Radiometry/instrumentation , Thyroid Gland/diagnostic imaging , Thyroid Gland/radiation effects , Tomography, Emission-Computed, Single-Photon , Humans , Radiotherapy Dosage
2.
Eur J Nucl Med Mol Imaging ; 44(6): 935-940, 2017 06.
Article in English | MEDLINE | ID: mdl-27988801

ABSTRACT

Radionuclide therapy using I-131 is commonly used for the treatment of benign thyroid diseases. The therapeutic dose to be administered is calculated based on the type of disease, the volume of the thyroid, and the measured uptake percentage. This methodology assumes a similar biological half-life of iodine, whereas in reality a large variation in biological half-life is observed. More knowledge about the actual biological half-life of iodine for individual patients will improve the quantification of the delivered radiation dose during radioiodine therapy and could aid the evaluation of the success of the therapy. In this feasibility study we used a novel measurement device [Collar Therapy Indicator (CoTI)] to measure the uptake curve of patients undergoing I-131 radioiodine therapy. The CoTI device is a light-weight wearable device that contains two independent gamma radiation detectors that are placed in a collar. By comparing results of thyroid uptake measurements with results obtained with a gamma camera, the precision of the system is demonstrated. Additionally, for three patients the uptake curve is measured during 48 h of admission in the hospital. The presented results demonstrate the feasibility of the new measurement device to measure the uptake curve during radioiodine therapy.


Subject(s)
Iodine Radioisotopes/metabolism , Radiometry/instrumentation , Thyroid Gland/metabolism , Biological Transport , Feasibility Studies , Humans , Iodine Radioisotopes/therapeutic use , Linear Models , Reproducibility of Results , Thyroid Gland/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...