Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cells ; 10(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34063989

ABSTRACT

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Subject(s)
Calcinosis , Myocytes, Smooth Muscle , Proteoglycans/metabolism , Vascular Remodeling , Animals , Cell Differentiation , Cohort Studies , Humans , Male , Mice , Mice, Knockout, ApoE , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats , SOX9 Transcription Factor/metabolism , Smad3 Protein/metabolism
2.
J Thromb Haemost ; 19(5): 1348-1363, 2021 05.
Article in English | MEDLINE | ID: mdl-33687782

ABSTRACT

INTRODUCTION: Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS: Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS: Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION: Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.


Subject(s)
Atherosclerosis , Atrial Fibrillation , Animals , Anticoagulants , Atherosclerosis/drug therapy , Dabigatran , Female , Humans , Mice , Vitamin K , Warfarin
3.
Eur Heart J Open ; 1(2): oeab017, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35919270

ABSTRACT

Aims: Vascular calcification is a hallmark of atherosclerotic burden and can predict the cardiovascular outcome. Vitamin K antagonists (VKA) are widely used anticoagulant drugs to treat patients at risk of arterial and venous thrombosis but are also associated with increase vascular calcification progression. We aim to unravel the paradox that VKA suppresses plasma coagulation but promotes vascular calcification and subsequent atherosclerosis-dependent coagulability of the vessel wall. Methods and results: Apoe -/- mice were placed on western-type diet enriched with the VKA warfarin for 18 weeks to measure atherosclerotic plaque burden, calcification, and coagulation. Patients (n = 54) displaying paroxysmal atrial fibrillation with a low cardiovascular risk, who were treated with VKA were included to measure pre-thrombotic state. Finally, primary vascular smooth muscle cells (VSMC) derived from human tissue explants were used for in vitro experiments. In Apoe -/- mice, VKA increases both atherosclerotic plaque size and calcification. Higher plaque calcification was associated with increased plasma levels of thrombin-antithrombin and factor IXa-antithrombin complexes in mice and patients treated with VKA. Mechanistically, phenotypic switching of VSMC into synthetic VSMC promotes thrombin generation, which is enhanced in a tissue-factor (TF)-dependent manner by VSMC calcification. Moreover, calcified VSMC exposed to whole blood under flow significantly enhanced platelet deposition and TF-dependent fibrin formation. Conclusions: Oral anticoagulation with VKA aggravates vascular calcification and atherosclerosis. VSMC phenotype differentiation impacts coagulation potential in a TF-dependent manner. VKA-induced vascular calcification increases hypercoagulability and could thereby potentially positively affect atherothrombosis.

4.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165740, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32087280

ABSTRACT

BACKGROUND: Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3ß stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3ß is inactivated during recovery of disuse-induced muscle atrophy. AIM: Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS: Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/ß knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS: Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION: This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.


Subject(s)
Glycogen Synthase Kinase 3 beta/genetics , Muscle Development/genetics , Muscular Atrophy/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Hindlimb Suspension , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Oxidative Phosphorylation/drug effects , Phenotype , Quality of Life , Signal Transduction/drug effects , Transcription Factors/genetics
5.
Sci Rep ; 9(1): 3909, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846818

ABSTRACT

Atherosclerosis is a progressive inflammatory vascular disorder, complicated by plaque rupture and subsequently atherothrombosis. In vitro studies indicate that key clotting proteases, such as factor Xa (FXa), can promote atherosclerosis, presumably mediated through protease activated receptors (PARs). Although experimental studies showed reduced onset of atherosclerosis upon FXa inhibition, the effect on pre-existing plaques has never been studied. Therefore, we investigated effects of FXa inhibition by rivaroxaban on both newly-formed and pre-existing atherosclerotic plaques in apolipoprotein-e deficient (ApoE-/-) mice. Female ApoE-/- mice (age: 8-9 weeks, n = 10/group) received western type diet (WTD) or WTD supplemented with rivaroxaban (1.2 mg/g) for 14 weeks. In a second arm, mice received a WTD for 14 weeks, followed by continuation with either WTD or WTD supplemented with rivaroxaban (1.2 mg/g) for 6 weeks (total 20 weeks). Atherosclerotic burden in aortic arch was assessed by haematoxilin & eosin immunohistochemistry (IHC); plaque vulnerability was examined by IHC against macrophages, collagen, vascular smooth muscle cells (VSMC) and matrix metalloproteinases (MMPs). In addition, PAR1 and -2 expressions and their main activators thrombin and FXa in the plaque were determined in the plaque. Administration of rivaroxaban at human therapeutic concentrations reduced the onset of atherosclerosis (-46%, p < 0.05), and promoted a regression of pre-existing plaques in the carotids (-24%, p < 0.001). In addition, the vulnerability of pre-existing plaques was reduced by FXa inhibition as reflected by reduced macrophages (-39.03%, p < 0.05), enhanced collagen deposition (+38.47%, p < 0.05) and diminished necrotic core (-31.39%, p < 0.05). These findings were accompanied with elevated vascular smooth muscle cells and reduced MMPs. Furthermore, expression of PARs and their activators, thrombin and FXa was diminished after rivaroxaban treatment. Pharmacological inhibition of FXa promotes regression of advanced atherosclerotic plaques and enhances plaque stability. These data suggest that inhibition of FXa may be beneficial in prevention and regression of atherosclerosis, possibly mediated through reduced activation of PARs.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Factor Xa Inhibitors/therapeutic use , Plaque, Atherosclerotic/drug therapy , Rivaroxaban/therapeutic use , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Blood Coagulation/drug effects , Disease Models, Animal , Factor Xa Inhibitors/pharmacology , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Rivaroxaban/pharmacology , Signal Transduction/drug effects
6.
Endocrinology ; 159(1): 519-534, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29069356

ABSTRACT

Hypoxemia may contribute to muscle wasting in conditions such as chronic obstructive pulmonary disease. Muscle wasting develops when muscle proteolysis exceeds protein synthesis. Hypoxia induces skeletal muscle atrophy in mice, which can in part be attributed to reduced food intake. We hypothesized that hypoxia elevates circulating corticosterone concentrations by reduced food intake and enhances glucocorticoid receptor (GR) signaling in muscle, which causes elevated protein degradation signaling and dysregulates protein synthesis signaling during hypoxia-induced muscle atrophy. Muscle-specific GR knockout and control mice were subjected to normoxia, normobaric hypoxia (8% oxygen), or pair-feeding to the hypoxia group for 4 days. Plasma corticosterone and muscle GR signaling increased after hypoxia and pair-feeding. GR deficiency prevented muscle atrophy by pair-feeding but not by hypoxia. GR deficiency differentially affected activation of ubiquitin 26S-proteasome and autophagy proteolytic systems by pair-feeding and hypoxia. Reduced food intake suppressed mammalian target of rapamycin complex 1 (mTORC1) activity under normoxic but not hypoxic conditions, and this retained mTORC1 activity was mediated by GR. We conclude that GR signaling is required for muscle atrophy and increased expression of proteolysis-associated genes induced by decreased food intake under normoxic conditions. Under hypoxic conditions, muscle atrophy and elevated gene expression of the ubiquitin proteasomal system-associated E3 ligases Murf1 and Atrogin-1 are mostly independent of GR signaling. Furthermore, impaired inhibition of mTORC1 activity is GR-dependent in hypoxia-induced muscle atrophy.


Subject(s)
Gene Expression Regulation, Enzymologic , Glucocorticoids/metabolism , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Receptors, Glucocorticoid/agonists , Signal Transduction , Animals , Autophagy , Cell Size , Corticosterone/blood , Corticosterone/metabolism , Crosses, Genetic , Hypoxia/blood , Hypoxia/pathology , Hypoxia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle Fibers, Fast-Twitch/enzymology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Random Allocation , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
7.
Lab Invest ; 96(1): 69-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26501868

ABSTRACT

Chorioamnionitis, caused by intra-amniotic exposure to bacteria and their toxic components, is associated with fetal gut inflammation and mucosal injury. In a translational ovine model, we have shown that these adverse intestinal outcomes to chorioamnionitis were the combined result of local gut and pulmonary-driven systemic immune responses. Chorioamnionitis-induced gut inflammation and injury was largely prevented by inhibiting interleukin-1 (IL-1) signaling. Therefore, we investigated whether local (gut-derived) IL-1α signaling or systemic IL-1α-driven immune responses (lung or chorioamnion/skin-derived) were sufficient for intestinal inflammation and mucosal injury in the course of chorioamnionitis. Fetal surgery was performed in sheep to isolate the lung, gastrointestinal tract, and chorioamnion/skin, and IL-1α or saline was given into the trachea, stomach, or amniotic cavity 1 or 6 days before preterm delivery. Selective IL-1α exposure to the lung, gut, or chorioamnion/skin increased the CD3+ cell numbers in the fetal gut. Direct IL-1α exposure to the gut impaired intestinal zonula occludens protein-1 expression, induced villus atrophy, changed the expression pattern of intestinal fatty acid-binding protein along the villus, and increased the CD68, IL-1, and TNF-α mRNA levels in the fetal ileum. With lung or chorioamnion/skin exposure to IL-1α, intestinal inflammation was associated with increased numbers of blood leukocytes without induction of intestinal injury or immaturity. We concluded that local IL-1α signaling was required for intestinal inflammation, disturbed gut maturation, and mucosal injury in the context of chorioamnionitis.


Subject(s)
Chorioamnionitis/immunology , Fetus/immunology , Interleukin-1alpha/immunology , Interleukin-1alpha/metabolism , Intestinal Mucosa/immunology , Lung/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Pregnancy , Sheep , Skin/immunology
8.
Nutrients ; 7(11): 9538-57, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26593943

ABSTRACT

Vitamin K-antagonists (VKA) are the most widely used anticoagulant drugs to treat patients at risk of arterial and venous thrombosis for the past 50 years. Due to unfavorable pharmacokinetics VKA have a small therapeutic window, require frequent monitoring, and are susceptible to drug and nutritional interactions. Additionally, the effect of VKA is not limited to coagulation, but affects all vitamin K-dependent proteins. As a consequence, VKA have detrimental side effects by enhancing medial and intimal calcification. These limitations stimulated the development of alternative anticoagulant drugs, resulting in direct oral anticoagulant (DOAC) drugs, which specifically target coagulation factor Xa and thrombin. DOACs also display non-hemostatic vascular effects via protease-activated receptors (PARs). As atherosclerosis is characterized by a hypercoagulable state indicating the involvement of activated coagulation factors in the genesis of atherosclerosis, anticoagulation could have beneficial effects on atherosclerosis. Additionally, accumulating evidence demonstrates vascular benefit from high vitamin K intake. This review gives an update on oral anticoagulant treatment on the vasculature with a special focus on calcification and vitamin K interaction.


Subject(s)
Anticoagulants/administration & dosage , Vitamin K/antagonists & inhibitors , Administration, Oral , Animals , Atherosclerosis/drug therapy , Carotid Artery Thrombosis/drug therapy , Disease Models, Animal , Humans , Osteocalcin/pharmacology , Randomized Controlled Trials as Topic , Venous Thrombosis/drug therapy
9.
Atherosclerosis ; 240(1): 10-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25744701

ABSTRACT

With the discovery that vitamin K-dependent matrix Gla-protein (MGP) is a strong and modifiable factor in the prevention of arterial calcification, vitamin K was put forward as novel treatment option in cardiovascular disease. The vasculoprotective properties of vitamin K are in part based on the ability to improve gamma-glutamylcarboxylation of MGP, which is a prerequisite for MGP as a calcification inhibitor. Data from experimental animal models reveal that high intake of vitamin K can prevent and even reverse vascular calcifications. In addition, clinical data demonstrate that prescription of vitamin K antagonists for long-term oral anticoagulant therapy accelerates vascular calcification. However, controlled data from randomized prospective vitamin K interventional trials are lacking, thereby weakening a general recommendation for supplementation. The present article summarizes our current knowledge on the association between vitamin K and cardiovascular health. Additionally, we focus on an outlook on important ongoing prospective vitamin K intervention studies. These studies address the issues whether vitamin K substitution helps modifying relevant cardiovascular surrogates such as vascular calcification and whether non-vitamin K oral anticoagulants provide an alternative to support cardiovascular health benefits. So research about cardiovascular protection by vitamin K is an evolving field in which we expect a boost of novel and relevant evidence shortly.


Subject(s)
Dietary Supplements , Vascular Diseases/prevention & control , Vitamin K/therapeutic use , Animals , Anticoagulants/adverse effects , Atherosclerosis/epidemiology , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Humans , Osteocalcin/metabolism , Protective Factors , Risk Assessment , Risk Factors , Treatment Outcome , Vascular Calcification/epidemiology , Vascular Calcification/metabolism , Vascular Calcification/prevention & control , Vascular Diseases/diagnosis , Vascular Diseases/epidemiology , Vascular Diseases/metabolism , Vitamin K Deficiency/diagnosis , Vitamin K Deficiency/drug therapy , Vitamin K Deficiency/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...