Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 44(19-20): 1595-1606, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625008

ABSTRACT

The use of nucleic acids (NAs) has revolutionized medical approaches and ushered in a new era of combating various diseases. Accordingly, there is an increasing demand for accurate identification, localization, quantification, and characterization of NAs encapsulated in nonviral or viral vectors. The vast spectrum of molecular dimensions and intra- and intermolecular interactions presents a formidable obstacle for NA analytical development. Typically, the comprehensive analysis of encapsulated NAs, free NAs, and their spatial distribution poses a challenge that is seldom tackled in its complete complexity. The identification of appropriate physicochemical methodologies for large nonencapsulated or encapsulated NAs is particularly intricate and necessitates an evaluation of the analytical outcomes and their appropriateness in addressing critical quality attributes. In this work, we examine the analytics of non-encapsulated or encapsulated large NAs (>500 nucleotides) utilizing capillary electrophoresis (CE) and liquid chromatography (LC) methodologies such as free zone CE, gel CE, affinity CE, and ion pair high-performance liquid chromatography (HPLC). These methodologies create a complete picture of the NA's critical quality attributes, including quantity, identity, purity, and content ratio.

2.
Eur J Pharm Biopharm ; 190: 1-23, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423416

ABSTRACT

Gene therapies offer promising therapeutic alternatives for many disorders that currently lack efficient treatment options. Due to their chemical nature and physico-chemical properties, delivery of polynucleic acids into target cells and subcellular compartments remains a significant challenge. Adeno-associated viruses (AAV) have gained a lot of interest for the efficient delivery of therapeutic single-stranded DNA (ssDNA) genomes over the past decades. More than a hundred products have been tested in clinical settings and three products have received market authorization by the US FDA in recent years. A lot of effort is being made to generate potent recombinant AAV (rAAV) vectors that show favorable safety and immunogenicity profiles for either local or systemic administration. Manufacturing processes are gradually being optimized to deliver a consistently high product quality and to serve potential market needs beyond rare indications. In contrast to protein therapeutics, most rAAV products are still supplied as frozen liquids within rather simple formulation buffers to enable sufficient product shelf life, significantly hampering global distribution and access. In this review, we aim to outline the hurdles of rAAV drug product development and discuss critical formulation and composition aspects of rAAV products under clinical evaluation. Further, we highlight recent development efforts in order to achieve stable liquid or lyophilized products. This review therefore provides a comprehensive overview on current state-of-the-art rAAV formulations and can further serve as a map for rational formulation development activities in the future.


Subject(s)
Dependovirus , Genetic Vectors , Dependovirus/genetics , Genetic Therapy
3.
Nucleic Acids Res ; 49(3): e16, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33290561

ABSTRACT

The gene and cell therapy fields are advancing rapidly, with a potential to treat and cure a wide range of diseases, and lentivirus-based gene transfer agents are the vector of choice for many investigators. Early cases of insertional mutagenesis caused by gammaretroviral vectors highlighted that integration site (IS) analysis was a major safety and quality control checkpoint for lentiviral applications. The methods established to detect lentiviral integrations using next-generation sequencing (NGS) are limited by short read length, inadvertent PCR bias, low yield, or lengthy protocols. Here, we describe a new method to sequence IS using Amplification-free Integration Site sequencing (AFIS-Seq). AFIS-Seq is based on amplification-free, Cas9-mediated enrichment of high-molecular-weight chromosomal DNA suitable for long-range Nanopore MinION sequencing. This accessible and low-cost approach generates long reads enabling IS mapping with high certainty within a single day. We demonstrate proof-of-concept by mapping IS of lentiviral vectors in a variety of cell models and report up to 1600-fold enrichment of the signal. This method can be further extended to sequencing of Cas9-mediated integration of genes and to in vivo analysis of IS. AFIS-Seq uses long-read sequencing to facilitate safety evaluation of preclinical lentiviral vector gene therapies by providing IS analysis with improved confidence.


Subject(s)
CRISPR-Associated Protein 9 , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Virus Integration , Animals , Cell Line , DNA, Viral/analysis , Genetic Vectors , Humans , Lentivirus/genetics , Mice , Proviruses/genetics
4.
Hum Gene Ther ; 31(17-18): 996-1009, 2020 09.
Article in English | MEDLINE | ID: mdl-32799685

ABSTRACT

Efforts to identify mutations that underlie inherited genetic diseases combined with strides in the development of gene therapy vectors over the last three decades have culminated in the approval of several adeno-associated virus (AAV)-based gene therapies. Genetic diseases that manifest in the lung such as cystic fibrosis (CF) and surfactant deficiencies, however, have so far proven to be elusive targets. Early clinical trials in CF using AAV serotype 2 (AAV2) achieved safety, but not efficacy endpoints; however, importantly, these studies provided critical information on barriers that need to be surmounted to translate AAV lung gene therapy toward clinical success. Bolstered with an improved understanding of AAV biology and more clinically relevant lung models, next-generation molecular biology and bioinformatics approaches have given rise to novel AAV capsid variants that offer improvements in transduction efficiency, immunological profile, and the ability to circumvent physical barriers in the lung such as mucus. This review discusses the principal limiting barriers to clinical success in lung gene therapy and focuses on novel engineered AAV capsid variants that have been developed to overcome those challenges.


Subject(s)
Capsid/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Lung/metabolism , Cystic Fibrosis/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Transduction, Genetic
5.
Nat Biotechnol ; 38(7): 845-855, 2020 07.
Article in English | MEDLINE | ID: mdl-32601435

ABSTRACT

Genome editing has the potential to treat an extensive range of incurable monogenic and complex diseases. In particular, advances in sequence-specific nuclease technologies have dramatically accelerated the development of therapeutic genome editing strategies that are based on either the knockout of disease-causing genes or the repair of endogenous mutated genes. These technologies are progressing into human clinical trials. However, challenges remain before the therapeutic potential of genome editing can be fully realized. Delivery technologies that have serendipitously been developed over the past couple decades in the protein and nucleic acid delivery fields have been crucial to genome editing success to date, including adeno-associated viral and lentiviral vectors for gene therapy and lipid nanoparticle and other non-viral vectors for nucleic acid and protein delivery. However, the efficiency and tissue targeting capabilities of these vehicles must be further improved. In addition, the genome editing enzymes themselves need to be optimized, and challenges regarding their editing efficiency, specificity and immunogenicity must be addressed. Emerging protein engineering and synthetic chemistry approaches can offer solutions and enable the development of safe and efficacious clinical genome editing.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/trends , Genetic Diseases, Inborn/therapy , Genetic Therapy , Genetic Diseases, Inborn/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Nanoparticles/therapeutic use , Protein Engineering
6.
Expert Opin Biol Ther ; 18(9): 959-972, 2018 09.
Article in English | MEDLINE | ID: mdl-30067117

ABSTRACT

INTRODUCTION: Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED: This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION: The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Genetic Therapy/trends , Liver/metabolism , Lung/metabolism , Animals , Dependovirus/genetics , Gene Editing , Gene Transfer Techniques/trends , Genetic Vectors/therapeutic use , Humans , Liver/pathology , Liver/virology , Lung/pathology , Lung/virology , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...