Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 12(29): 8219-40, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20485846

ABSTRACT

An improved intermolecular potential surface for the benzene dimer is constructed from interaction energies computed by symmetry-adapted perturbation theory, SAPT(DFT), with the inclusion of third-order contributions. Twelve characteristic points on the surface have been investigated also using the coupled-cluster method with single, double, and perturbative triple excitations, CCSD(T), and triple-zeta quality basis sets with midbond functions. The SAPT and CCSD(T) results are in close agreement and provide the best representation of these points to date. The potential was used in calculations of vibration-rotation-tunneling (VRT) levels of the dimer by a method appropriate for large amplitude intermolecular motions and tunneling between multiple equivalent minima in the potential. The resulting VRT levels were analyzed with the use of the permutation-inversion full cluster tunneling (FCT) group G(576) and a chain of subgroups that starts from the molecular symmetry group C(s)(M) of the rigid dimer at its equilibrium C(s) geometry and leads to G(576) if all possible intermolecular tunneling mechanisms are feasible. Further information was extracted from the calculated wave functions. It was found, in agreement with the experimental data, that for all of the 54 G(576) symmetry species (with different nuclear spin statistical weights) the lower VRT states have a tilted T-shape (TT) structure; states with the parallel-displaced structure are higher in energy than the ground state of A symmetry by at least 30 cm(-1). The dissociation energy D(0) equals 870 cm(-1), while the depth D(e) of the TT minimum in the potential is 975 cm(-1). Hindered rotation of the cap in the TT structure and tilt tunneling lead to level splittings on the order of 1 cm(-1). Also intermolecular vibrations with excitation energies starting at a few cm(-1) were identified. A further small, but probably significant, level splitting was assigned to cap turnover, although in scans of the potential surface we could not find a plausible 'reaction path' for this process. Rotational constants were extracted from energy levels calculated for total angular momentum J = 0 and 1, and from expectation values of the inertia tensor. Although the end-over-end rotational constant B + C agrees well with the measured microwave spectra, there is disagreement with the measurements concerning the (a)symmetric rotor character of the benzene dimer. It is concluded from calculations for the 54 nuclear spin species that the microwave spectrum should show overlapping contributions from many different species. Another interesting conclusion regards the role of the quantum number K, for a prolate near-symmetric rotor the projection of the total angular momentum on the prolate axis. For the benzene dimer, K has a substantial effect on the energy levels associated with the intermolecular motions of the complex.

2.
J Phys Chem A ; 113(44): 12285-94, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19476322

ABSTRACT

The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the intramolecular modes for transitions involving different tunneling levels and different values of the rotational quantum number K. For K = 0 --> 0 transitions these variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful, however, that our detailed calculations including all ground and excited state tunneling levels provide an explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as well as for the fact that the other bands in these spectra show much smaller or no splittings.

3.
Phys Chem Chem Phys ; 10(32): 4716-31, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18688514

ABSTRACT

The ab initio water dimer interaction energies obtained from coupled cluster calculations and used in the CC-pol water pair potential (Bukowski et al., Science, 2007, 315, 1249) have been refitted to a site-site form containing eight symmetry-independent sites in each monomer and denoted as CC-pol-8s. Initially, the site-site functions were assumed in a B-spline form, which allowed a precise optimization of the positions of the sites. Next, these functions were assumed in the standard exponential plus inverse powers form. The root mean square error of the CC-pol-8s fit with respect to the 2510 ab initio points is 0.10 kcal mol(-1), compared to 0.42 kcal mol(-1) of the CC-pol fit (0.010 kcal mol(-1) compared to 0.089 kcal mol(-1) for points with negative interaction energies). The energies of the stationary points in the CC-pol-8s potential are considerably more accurate than in the case of CC-pol. The water dimer vibration-rotation-tunneling spectrum predicted by the CC-pol-8s potential agrees substantially and systematically better with experiment than the already very accurate spectrum predicted by CC-pol, while specific features that could not be accurately predicted previously now agree very well with experiment. This shows that the uncertainties of the fit were the largest source of error in the previous predictions and that the present potential sets a new standard of accuracy in investigations of the water dimer.

4.
J Phys Chem A ; 112(14): 3002-9, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18338878

ABSTRACT

Quantum mechanical wavepacket calculations for the photodissociation of water in the second absorption band are presented. Using O + H2 Jacobi coordinates, partial cross sections for the O(1D) + H2 channel are calculated for different initial rotational states. Conical intersection and Renner-Teller effects are included. The branching ratios for the four accessible dissociation channels at 121.6 nm are in good agreement with experiment (J. Chem. Phys. 1982, 77, 2432). The calculations predict significant rotational and vibrational excitation of the H2 fragments. Photodissociation of ortho and para water produces predominantly, but not exclusively, ortho and para H2 fragments, respectively.

5.
J Phys Chem A ; 111(41): 10331-7, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17547382

ABSTRACT

Accurate quantum-mechanical results for thermodynamic data, cumulative reaction probabilities (for J = 0), thermal rate constants, and kinetic isotope effects for the three isotopic reactions H2 + CH3 --> CH4 + H, HD + CH3 --> CH4 + D, and D2 + CH3 --> CH(3)D + D are presented. The calculations are performed using flux correlation functions and the multiconfigurational time-dependent Hartree (MCTDH) method to propagate wave packets employing a Shephard interpolated potential energy surface based on high-level ab initio calculations. The calculated exothermicity for the H2 + CH3 --> CH4 + H reaction agrees to within 0.2 kcal/mol with experimentally deduced values. For the H2 + CH3 --> CH4 + H and D2 + CH3 --> CH(3)D + D reactions, experimental rate constants from several groups are available. In comparing to these, we typically find agreement to within a factor of 2 or better. The kinetic isotope effect for the rate of the H2 + CH3 --> CH4 + H reaction compared to those for the HD + CH3 --> CH4 + D and D2 + CH3 --> CH(3)D + D reactions agree with experimental results to within 25% for all data points. Transition state theory is found to predict the kinetic isotope effect accurately when the mass of the transferred atom is unchanged. On the other hand, if the mass of the transferred atom differs between the isotopic reactions, transition state theory fails in the low-temperature regime (T < 400 K), due to the neglect of the tunneling effect.

6.
J Chem Phys ; 126(20): 204313, 2007 May 28.
Article in English | MEDLINE | ID: mdl-17552768

ABSTRACT

Quantum mechanical calculations of the cross sections for photodissociation of CH4 and CD4 in the 1t2-->3s band are presented. The potential energy surfaces for the three states correlating with the 1 1T2 state at tetrahedral geometries are calculated. The elements of the (3x3) matrix representing the electronic Hamiltonian in the diabatic basis are expanded in powers of nuclear coordinates, up to the second order. The expansion coefficients are based on accurate multireference configuration interaction calculations. The electronically nonadiabatic dynamics is treated with the multiconfiguration time-dependent Hartree approach. All nine internal degrees of methane are included in the quantum dynamics simulations. The calculated cross section agrees well with experiment. Semiclassical calculations using the reflection principle suggest that the peaks in the spectrum correspond to the three adiabatic electronic states correlating with the 1 1T2 state at Td geometries. However, the non-Born-Oppenheimer terms in the Hamiltonian have a strong effect on the positions of the peaks in the absorption spectrum. The results of semiclassical calculations, which neglect these terms, are therefore quite different from the accurate quantum results and experiment.

7.
J Chem Phys ; 126(8): 084303, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17343444

ABSTRACT

In previous work [T. Wu, H. J. Werner, and U. Manthe, Science 306, 2227 (2004)], accurate quantum reaction rate calculations of the rate constant for the H+CH4-->CH3+H2 reaction have been presented. Both the electronic structure calculations and the nuclear dynamics calculations are converged with respect to the basis sets employed. In this paper, the authors apply the same methodology to an isotopic variant of this reaction: D+CH4-->CH3+HD. Accurate rate constants are presented for temperatures between 250 and 400 K. For temperatures between 400 and 800 K, they use a harmonic extrapolation to obtain approximate rate constants for H/D+CH4. The calculations suggest that the experimentally reported rate constants for D+CH4 are about a factor of 10-20 too high. For H+CH4, more accurate experiments are available and agreement is much better: the difference is less than a factor of 2.6. The kinetic isotope effect for the H/D+CH4 reactions is studied and compared with experiment and transition state theory (TST) calculations. Harmonic TST was found to provide a good description of the kinetic isotope effect.

8.
J Chem Phys ; 125(12): 124302, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17014169

ABSTRACT

The potential energy surface for the first excited singlet state (S(1)) of methane is explored using multireference singles and doubles configuration interaction calculations, employing a valence triple zeta basis set. A larger valence quadruple zeta basis is used to calculate the vertical excitation energy and dissociation energies. All stationary points found on the S(1) surface are saddle points and have imaginary frequencies for symmetry-breaking vibrations. By studying several two-dimensional cuts through the potential energy surfaces, it is argued that CH(4) in the S(1) state will distort to planar structures. Several conical intersection seams between the ground state surface S(0) and the S(1) surface have been identified at planar geometries. The conical intersections provide electronically nonadiabatic pathways towards products CH(3)((approximately)X (2)A"(2))+H, CH(2)((approximately)a (1)A(1))+H(2), or CH(2)((approximately)X (3)B(1))+H+H. The present results thereby make it plausible that the CH(3)((approximately)X (2)A"(2))+H and CH(2)((approximately)a (1)A(1))+H(2) channels are major dissociation channels, as has been observed experimentally.

10.
J Chem Phys ; 123(6): 64106, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16122299

ABSTRACT

In the multiconfiguration time-dependent Hartree (MCTDH) approach, the wave function is expanded in time-dependent basis functions, called single-particle functions, to increase the efficiency of the wave-packet propagation. The correlation discrete variable representation (CDVR) approach, which is based on a time-dependent discrete variable representation (DVR), can be employed to evaluate matrix elements of the potential energy. The efficiency of the MCTDH method can be further enhanced by using multidimensional single-particle functions. However, up to now the CDVR approach could not be used in MCTDH calculations employing multidimensional single-particle functions, since this would require a general multidimensional non-direct-product DVR scheme. Recently, Dawes and Carrington presented a practical scheme to implement general non-direct-product multidimensional DVRs [R. Dawes and T. Carrington, Jr., J. Chem. Phys. 121, 726 (2004)]. The present work utilizes their scheme in the MCTDH/CDVR approach. The accuracy is tested using the photodissociation of NOCl as example. The results show that the CDVR scheme based on multidimensional time-dependent DVRs allows for an accurate evaluation of the potential in MCTDH calculations with multidimensional single-particle functions.

11.
J Chem Phys ; 122(23): 234702, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16008468

ABSTRACT

Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential-energy surface for the transition-state region is constructed from density-functional theory calculations using Shepard interpolation. The quantum results are in very good agreement with the results of the harmonic transition-state theory. In contrast to the findings of previous model calculations on similar systems, the tunneling effect is found to be small.

12.
J Chem Phys ; 123(12): 124706, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16392510

ABSTRACT

Six-dimensional quantum calculations of the sticking probability for H2 hitting a Cu(100) surface with off-normal incidence are presented. The multiconfiguration time-dependent Hartree approach is employed for an efficient wave-packet propagation. The sticking probability is calculated for different initial momenta parallel to the surface. In contrast with the picture described in the literature, the sticking probability was found to depend on the parallel momentum. The results are explained by the topology of the potential-energy surface, which shows significant corrugation with a moderate variation of the barrier height with the surface site.

13.
J Chem Phys ; 121(12): 5623-8, 2004 Sep 22.
Article in English | MEDLINE | ID: mdl-15366985

ABSTRACT

Problems appear in discrete variable representations (DVRs) based on general basis sets when the coordinate matrix has degenerate eigenvalues. Then the DVR is not uniquely defined. This paper shows that this problem can be caused by symmetry. Taking the symmetry into account when constructing the DVR solves the problem. The symmetry effect can be particularly important for the time-dependent DVR used in multiconfigurational time-dependent Hartree calculations employing the correlation DVR (CDVR) approach. Problems reported previously for the initial-state selected treatment of the H+H(2) reaction can be attributed to this symmetry effect. They can be solved by using a symmetry-adapted approach to construct the time-dependent DVR. Thus, the present paper shows that the CDVR scheme can be employed also in initial-state selected scattering calculations if the symmetry of the system is properly taken into account in the construction of the time-dependent DVR.

14.
J Chem Phys ; 121(8): 3829-35, 2004 Aug 22.
Article in English | MEDLINE | ID: mdl-15303951

ABSTRACT

The efficiency of the multiconfigurational time-dependent Hartree (MCTDH) method for calculating the initial-state selected dissociation probability of H(2)(v=0,j=0) on Cu(100) is investigated. The MCTDH method is shown to be significantly more efficient than standard wave packet methods. A large number of single-particle functions is required to converge the initial-state selected reaction probability for dissociative adsorption. Employing multidimensional coordinates in the MCTDH ansatz (mode combination) is found to be crucial for the efficiency of these MCTDH calculations. Perspectives towards the application of the MCTDH approach to study dissociative adsorption of polyatomic molecules on surfaces are discussed.

15.
J Chem Phys ; 120(1): 224-9, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-15267281

ABSTRACT

The room temperature absorption spectra of water and its isotopomers D2O and HOD have been determined in absolute cross section units in the 125 to 145 nm wavelength region using synchrotron radiation. The experimental results for these B band spectra are compared with results from quantum mechanical calculations using accurate diabatic ab initio potentials. A Monte Carlo sampling over the initial rotational states of the molecules is applied in order to calculate the cross sections at a temperature of 300 K. The overall rotation of the water molecule is treated exactly. Both for the experimental and for the theoretical spectrum an analysis is made in terms of a component attributed to rapid direct dissociation processes and a component attributed to longer-lived resonances. The agreement between the results from experiment and theory is excellent for H2O and D2O. In the case of HOD in the results of theory two more resonances are found at low energy. It is demonstrated that the width of the resonances of 0.04 eV is the result of overlapping and somewhat narrower resonances in the spectra of molecules differing in rotational ground state.

SELECTION OF CITATIONS
SEARCH DETAIL
...