Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 31(1): 219-227, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33205346

ABSTRACT

Activity of the canonical estrogen receptor (ER) pathway is equivalent to functional activity of the nuclear ER transcription factor. Monoclonal antibodies (MoAbs) that identify nuclear ER in cells and tissue samples are frequently used to assess ER transcriptional activity, however, it remains unclear if this approach is sufficiently predictive of ER pathway activity. This study uses ER-positive breast cancer cell lines (MCF7 and T47D) in which ER transcriptional activity was quantified using an mRNA-based ER pathway activity assay. The relationship between ER activity and nuclear ER staining with ER MoAbs was then investigated. Confirming earlier findings, the results show that while the presence of ER in the cell nucleus is a prerequisite for ER activity, it is not predictive of ER transcriptional activity. There were remarkable differences in the behaviours of the antibodies used in the study. EP1 and 1D5 showed reduced nuclear staining when ER was transcriptionally active, while staining with H4624 was independent of ER activity. To improve discrimination between active and inactive nuclear ER based on ER staining, a method was developed which consists of dual ER MoAb immunofluorescent staining, followed by generation of a digital image with a standard digital pathology scanner. Then a cell nucleus detection algorithm and per cell calculation of the nuclear H4624/EP1 fluorescence intensity ratio was applied, where a high H4624/EP1 ratio predicts an active ER pathway. With this method, the EP1 and 1D5 antibodies are interchangeable. We hypothesize that the transcriptional activation of ER hides the epitope recognized by MoAbs EP1 and 1D5, while H4624 binds an ER epitope that remains accessible during ER pathway activation. The method described in this study should add substantial value to the assessment of ER pathway activity for biomedical research and diagnostics.


Subject(s)
Antibodies, Monoclonal/immunology , Receptors, Estrogen/metabolism , Transcription, Genetic , Humans , Immunohistochemistry , Receptors, Estrogen/immunology , Staining and Labeling
2.
Lab Chip ; 18(13): 1891-1902, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29873383

ABSTRACT

Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity amongst cells within a population. We have developed an injection-moulded valveless microfluidic device in which single cells from colorectal cancer derived cell lines (LS174T, LS180 and RKO) and fresh colorectal tumors have been individually trapped, their genomes extracted and prepared for sequencing using multiple displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a reference human genome, indicating that there was effectively no contamination of these samples from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%) and we obtain genome coverages approaching 90%. To achieve this high quality, our device design and process shows that amplification can be conducted in microliter volumes as long as the lysis is in sub-nanoliter volumes. Our data thus demonstrates that high quality whole genome sequencing of single cells can be achieved using a relatively simple, inexpensive and scalable device. Detection of genetic heterogeneity at the single cell level, as we have demonstrated for freshly obtained single cancer cells, could soon become available as a clinical tool to precisely match treatment with the properties of a patient's own tumor.


Subject(s)
DNA, Neoplasm/genetics , Genome, Human/genetics , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Sequence Analysis, DNA/instrumentation , Single-Cell Analysis/instrumentation , Cell Line, Tumor , Humans , Single-Cell Analysis/methods
3.
Integr Biol (Camb) ; 3(6): 675-83, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21541374

ABSTRACT

Receptor internalization upon ligand stimulation is a key component of a cell's response and allows a cell to correctly sense its environment. Novel fluorescent methods have enabled the direct visualization of the agonist-stimulated G-protein-coupled receptors (GPCR) trafficking in living cells. However, it is difficult to observe internalization of GPCRs in vivo due to intrinsic autofluorescence and cytosolic signals of fluorescently labeled GPCRs. This study uses the superior positional accuracy of single-molecule fluorescence microscopy to visualize in real time the internalization of Dictyostelium discoideum cAMP receptors, cAR1, genetically encoded with eYFP. This technique made it possible to follow the number of receptors in time revealing that the fraction of cytosolic receptors increases after persistent agonist stimulation and that the majority of the receptors were degraded after internalization. The observed internalization process was phosphorylation dependent, as shown with the use of a phosphorylation deficient cAR1 mutant, cm1234-eYFP, or stimulation with an antagonist, Rp-cAMPS that does not induce receptor phosphorylation. Furthermore, experiments done in mound-stage cells suggest that intrinsic, phosphorylation-induced internalization of cAR1 is necessary for Dictyostelium wild type cells to progress properly through multicellular development. To our knowledge, this observation illustrates for the first time phosphorylation-dependent internalization of single cAR1 molecules in living cells and its involvement in multicellular development. This very sensitive imaging of receptor internalization can be a useful and universal approach for pharmacological characterization of GPCRs in other cell types.


Subject(s)
Dictyostelium/metabolism , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Receptors, G-Protein-Coupled/metabolism , Subcellular Fractions/metabolism
4.
J Cell Sci ; 123(Pt 17): 2922-30, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20682639

ABSTRACT

The interaction of G-protein-coupled receptors with G proteins is a key event in transmembrane signal transduction that leads to vital decision-making by the cell. Here, we applied single-molecule epifluorescence microscopy to study the mobility of both the Gbetagamma and the Galpha2 subunits of the G protein heterotrimer in comparison with the cAMP receptor responsible for chemotactic signaling in Dictyostelium discoideum. Our experimental results suggest that approximately 30% of the G protein heterotrimers exist in receptor-precoupled complexes. Upon stimulation in a chemotactic gradient, this complex dissociates, subsequently leading to a linear diffusion and collision amplification of the external signal. We further found that Gbetagamma was partially immobilized and confined in an agonist-, F-actin- and Galpha2-dependent fashion. This led to the hypothesis that functional nanometric domains exist in the plasma membrane, which locally restrict the activation signal, and in turn, lead to faithful and efficient chemotactic signaling.


Subject(s)
Chemotaxis/physiology , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Movement , Cells, Cultured , Dictyostelium/cytology , Dictyostelium/metabolism
5.
J Cell Sci ; 121(Pt 10): 1750-7, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18469015

ABSTRACT

The directed cell migration towards a chemotactic source, chemotaxis, involves three complex and interrelated processes: directional sensing, cell polarization and motility. Directional sensing allows migrating eukaryotic cells to chemotax in extremely shallow gradients (<2% across the cell body) of the chemoattractant. Although directional sensing has been observed as spatially restricted responses along the plasma membrane, our understanding of the ;compass' of the cell that controls the gradient-induced translocation of proteins during chemotactic movements is still largely lacking. Until now, the dynamical behaviour and mobility of the chemoattractant-receptor molecule has been neglected in models describing the directional sensing mechanisms. Here, we show by single-molecule microscopy an agonist-induced increase in the mobile fraction of cAMP-receptor at the leading edge of chemotacting Dictyostelium discoideum cells. The onset of receptor mobility was correlated to the uncoupling and activation of the Galpha2-protein. A finite-element simulation showed that the increase in mobile fraction of the activated receptor enabled the amplified generation of activated Gbetagamma-dimers at the leading edge of the cell, faithfully representing a primary linear amplification step in directional sensing. We propose here that modulation of the receptor mobility is directly involved in directional sensing and provides a new mechanistic basis for the primary amplification step in current theoretical models that describe directional sensing.


Subject(s)
Chemotactic Factors/metabolism , Chemotaxis/physiology , Dictyostelium/physiology , Protozoan Proteins/metabolism , Receptors, Cyclic AMP/metabolism , Animals , Dictyostelium/cytology , Dimerization , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...