Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(24): e202302844, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37022339

ABSTRACT

A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h-1 ), catalyst performance (up to 84 s-1 and more than 120 000 catalytic turnovers). Molecular modelling of the enzyme-substrate interaction puts a basis for the mechanistic understanding of AaeUPO selectivity.

2.
Chem Sci ; 14(6): 1532-1542, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36794180

ABSTRACT

The reactivity of the acceptor alcohol can have a tremendous influence on the outcome of a glycosylation reaction, both in terms of yield and stereoselectivity. Through a systematic survey of 67 acceptor alcohols in glycosylation reactions with two glucosyl donors we here reveal how the reactivity of a carbohydrate acceptor depends on its configuration and substitution pattern. The study shows how the functional groups flanking the acceptor alcohol influence the reactivity of the alcohol and show that both the nature and relative orientation play an essential role. The empiric acceptor reactivity guidelines revealed here will aid in the rational optimization of glycosylation reactions and be an important tool in the assembly of oligosaccharides.

3.
Nat Commun ; 11(1): 2664, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471982

ABSTRACT

Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconjugates to fuel biological research.


Subject(s)
Computational Chemistry/methods , Dioxoles/chemistry , Oligosaccharides/chemical synthesis , Selenium Compounds/chemistry , Carbohydrate Conformation , Galactose/chemistry , Glucose/chemistry , Glycosylation , Mannose/chemistry , Spectrophotometry, Infrared
4.
J Med Chem ; 62(17): 7910-7922, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31437392

ABSTRACT

Drug discovery programs of covalent irreversible, mechanism-based enzyme inhibitors often focus on optimization of potency as determined by IC50-values in biochemical assays. These assays do not allow the characterization of the binding activity (Ki) and reactivity (kinact) as individual kinetic parameters of the covalent inhibitors. Here, we report the development of a kinetic substrate assay to study the influence of the acidity (pKa) of heterocyclic leaving group of triazole urea derivatives as diacylglycerol lipase (DAGL)-α inhibitors. Surprisingly, we found that the reactivity of the inhibitors did not correlate with the pKa of the leaving group, whereas the position of the nitrogen atoms in the heterocyclic core determined to a large extent the binding activity of the inhibitor. This finding was confirmed and clarified by molecular dynamics simulations on the covalently bound Michaelis-Menten complex. A deeper understanding of the binding properties of covalent serine hydrolase inhibitors is expected to aid in the discovery and development of more selective covalent inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Lipoprotein Lipase/antagonists & inhibitors , Molecular Dynamics Simulation , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Kinetics , Lipoprotein Lipase/metabolism , Molecular Structure , Structure-Activity Relationship
5.
Chem Soc Rev ; 48(17): 4688-4706, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31287452

ABSTRACT

The outcome of a glycosylation reaction critically depends on the reactivity of all reaction partners involved: the donor glycoside (the electrophile), the activator (that generally provides the leaving group on the activated donor species) and the glycosyl acceptor (the nucleophile). The influence of the donor on the outcome of a glycosylation reaction is well appreciated and documented. Differences in donor reactivity have led to the development of chemoselective glycosylation reactions and the reactivity of donor glycosides has been tuned to affect stereoselective glycosylation reactions. The quantification of donor reactivity has enabled the conception of streamlined one-pot glycosylation sequences. In contrast, although it has long been known that the nature and the reactivity of the nucleophile influence the outcome of a glycosylation, the knowledge of acceptor reactivity and insight into the consequences thereof are often circumstantial or anecdotal. This review documents how the reactivity impacts the glycosylation reaction outcome both in terms of chemical yield and stereoselectivity. The effect of acceptor nucleophilicity on the reaction mechanism is described and steric, conformational and electronic influences are outlined. Quantitative and computational approaches to comprehend acceptor nucleophilicity are assessed. The increasing insight into the stereoelectronic effects governing glycoside reactivity will eventually enable the conception of effective stereoselective glycosylation methodology that can be tuned to the reaction partners at hand.

6.
Angew Chem Int Ed Engl ; 57(27): 8240-8244, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29603532

ABSTRACT

The reactivity of both coupling partners-the glycosyl donor and acceptor-is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting-group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure-reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis-glucosylations.


Subject(s)
Glycosides/chemistry , Benzene/chemistry , Galactose/chemistry , Glycosylation , Nitrobenzoates/chemistry , Stereoisomerism
7.
ACS Appl Mater Interfaces ; 9(28): 23458-23465, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28657291

ABSTRACT

Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their function relies on water/proton-exchange between the pores and bulk water. Here we present a comprehensive study on the effects of PEGylation on the relaxometric properties of nanozeolite LTL (dimensions of 20 × 40 nm) ion-exchanged with paramagnetic GdIII ions. We evidence that as long as the surface grafting density of the PEG chains does not exceed the "mushroom" regime (conjugation of up to 6.2 wt % of PEG), Gd-LTL retains a remarkable longitudinal relaxivity (38 s-1 mM-1 at 7 T and 25 °C) as well as the pH-dependence of the longitudinal and transverse relaxation times. At higher PEG content, the more compact PEG layer (brush regime) limits proton/water diffusion and exchange between the interior of LTL and the bulk, with detrimental consequences on relaxivity. Furthermore, PEGylation of Gd-LTL dramatically decreases the leakage of toxic GdIII ions in biological media and in the presence of competing anions, which together with minimal cytotoxicity renders these materials promising probes for MRI applications.


Subject(s)
Metal Nanoparticles , Contrast Media , Gadolinium , Magnetic Resonance Imaging , Magnetics , Polyethylene Glycols , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...