Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 587: 393-401, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33370661

ABSTRACT

In preparing polymer capsules by vesicle templated emulsion polymerization, the initial size and morphology of the biomimetic vesicle template dictate the final size and morphology of the capsules. The presence of salts (NaCl, NaBr and LiCl) influences the size, dispersity (PDI) and morphology of dimethyldioctadecylammonium bromide or chloride (DODAX, X  = Br- or Cl-) vesicles, prepared via membrane extrusion. DODAX vesicles in pure water exhibit broad size distributions with PDI of 0.5 and 0.3 for DODAB and DODAC, respectively. Addition of salts in water before (pre-addition) and after (post-addition) extrusion reduces the size and PDI of the vesicles significantly and results in various morphology investigated with cryo-TEM. It is observed that at low salt concentration (≤0.5 mM) in pre-addition, DODAX exists as a nice quasi spherical unilamellar vesicle, suitable for vesicle templated polymerization whereas in post-addition of salt at any concentration, the morphology is dominated by structures not suitable for templating application. The information obtained here is crucial for vesicle templated emulsion polymerization and it will be shown that there is a relationship between vesicle template morphology and final polymer capsule morphology.

2.
Langmuir ; 21(15): 6950-6, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008408

ABSTRACT

We report the controlled heterocoagulation of platelets and spheres, leading to the formation of colloidally stable, anisotropic hybrid particles. Anionically charged, nanosized polymer latex spherical particles were heterocoagulated on the surface of cationically charged hexagonal gibbsite platelets via the adsorption of a single layer of spheres onto both sides of the hexagonal platelets. The latex particles were annealed at a temperature above the Tg of the latex polymer, resulting in a thin polymer layer covering the gibbsite platelets. This heterocoagulation approach enabled the encapsulation of hydrophilic inorganic particles with polymer latexes and the formation of anisotropic hybrid particles.

3.
J Microencapsul ; 18(4): 533-43, 2001.
Article in English | MEDLINE | ID: mdl-11428681

ABSTRACT

A process was developed for the microencapsulation of inorganic filler particles with poly-methyl-methacrylate, to increase the interaction between the hydrophilic filler particles and a polymer matrix. The filler utilised was aluminium hydroxide with an average diameter of 1.9 microm and a specific surface area of 5 m2/g. The process comprised a surface modification, in which a monolayer of isopropoxy titanium isostearate was chemically bound to the surface to render it hydrophobic and to ensure a chemical bond between the filler and the organic phase. Then, an encapsulation reaction was carried out by means of an emulsion-like polymerization process at monomer starved conditions. The modified particles were stabilized in water with sodium-dodecyl-sulphate. A redox system consisting of cumene-hydroperoxide in combination with sodium-formaldehyde-sulphoxylate and iron(II) salt was applied for the initiation of the polymerization. Besides surface polymer, free polymer particles were also formed. The parameters which varied were the filler concentration, the concentration of the initiator components and the surfactant concentration. At optimum conditions, approximately 50% of the added monomer polymerized at the modified filler surface, thus forming encapsulated filler particles. SEM together with TGA analysis indicated that a smooth polymer layer had been formed on the filler surface. At high filler loading, however, coagulation occurred.


Subject(s)
Aluminum Hydroxide , Drug Compounding/methods , Polymethyl Methacrylate , Capsules , Edetic Acid , Iron , Microscopy, Electron, Scanning , Particle Size , Sodium Dodecyl Sulfate , Surface Properties , Surface-Active Agents
4.
J Inorg Biochem ; 19(3): 213-26, 1983 Nov.
Article in English | MEDLINE | ID: mdl-6417269

ABSTRACT

Binding of cations to chondroitin sulfate A and C, chondroitin, and D-glucuronate was investigated in neutral and acidic aqueous media using H+, Cu2+, and Na+ ion-specific electrodes, viscometry, electron spin resonance (esr), and ligand-field spectroscopy. Site binding to the carboxylate group and only electrostatic interaction with the sulfate group could describe the results well. The nitrogen atom of the N-acetyl group appeared not to be involved in bonding of cations to chondroitin(sulfate) systems. The interaction of the divalent metal ions follows the Irving-Williams series. The value of the electrostatic potential at the carboxylate group of chondroitin(sulfate), as experienced by a cation, was determined in dependence of cation bonding. It proved to be difficult to establish the composition of a complex of a metal ion with a polyion by means of a molar ratio curve.


Subject(s)
Chondroitin Sulfates , Chondroitin , Copper , Sodium , Cations , Chemical Phenomena , Chemistry , Chondroitin/analogs & derivatives , Hydrogen-Ion Concentration , Potentiometry , Structure-Activity Relationship , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...