Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Article in English | MEDLINE | ID: mdl-36333503

ABSTRACT

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Subject(s)
Congenital Hyperinsulinism , Insulin-Secreting Cells , Humans , Hexokinase/genetics , Hexokinase/metabolism , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Regulatory Sequences, Nucleic Acid/genetics
2.
Appl Plant Sci ; 5(9)2017 Sep.
Article in English | MEDLINE | ID: mdl-28989823

ABSTRACT

PREMISE OF THE STUDY: Ficinia spiralis (Cyperaceae) is a declining sand-binding sedge of ecological and cultural importance. Microsatellite primers were developed in F. spiralis to investigate how population genetic structure is related to the pronounced morphological, physiological, and ecological variation observed in this species. METHODS AND RESULTS: A 454 shotgun-sequencing approach was used to generate 157,274 raw sequence reads, 536 of which contained microsatellites. After initial primer testing for 40 loci, 14 polymorphic loci were isolated, containing five to 27 alleles per locus. Ten of these loci also amplified in a congener, F. nodosa. CONCLUSIONS: These loci will enable the assessment of the population genetic structure of F. spiralis, improving our understanding of the population processes underlying the observed morphological, physiological, and ecological variation in this endemic species. As the first microsatellites developed in Ficinia, these loci are a valuable resource for population genetic studies within this genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...