Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4141, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230471

ABSTRACT

Genetic gain in potato is hampered by the heterozygous tetraploid genome of cultivated potato. Converting potato into a diploid inbred-line based F1-hybrid crop provides a promising route towards increased genetic gain. The introduction of a dominant S-locus inhibitor (Sli) gene into diploid potato germplasm allows efficient generation of self-fertilized seeds and thus the development of potato inbred lines. Little is known about the structure and function of the Sli locus. Here we describe the mapping of Sli to a 12.6 kb interval on chromosome 12 using a recombinant screen approach. One of two candidate genes present in this interval shows a unique sequence that is exclusively present in self-compatible lines. We describe an expression vector that converts self-incompatible genotypes into self-compatible and a CRISPR-Cas9 vector that converts SC genotypes into SI. The Sli gene encodes an F-box protein that is specifically expressed in pollen from self-compatible plants. A 533 bp insertion in the promotor of that gene leads to a gain of function mutation, which overcomes self-pollen rejection.


Subject(s)
Genes, Plant/genetics , Plant Breeding , Plant Proteins/genetics , Solanum tuberosum/genetics , CRISPR-Cas Systems , Chromosome Mapping , Chromosomes, Plant , Diploidy , Genotype , Heterozygote , Magnoliopsida , Pollen/genetics , Seeds/metabolism , Self-Incompatibility in Flowering Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...