Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 211(7): 1465-83, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24935259

ABSTRACT

Myelin oligodendrocyte glycoprotein (MOG), a constituent of central nervous system myelin, is an important autoantigen in the neuroinflammatory disease multiple sclerosis (MS). However, its function remains unknown. Here, we show that, in healthy human myelin, MOG is decorated with fucosylated N-glycans that support recognition by the C-type lectin receptor (CLR) DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on microglia and DCs. The interaction of MOG with DC-SIGN in the context of simultaneous TLR4 activation resulted in enhanced IL-10 secretion and decreased T cell proliferation in a DC-SIGN-, glycosylation-, and Raf1-dependent manner. Exposure of oligodendrocytes to proinflammatory factors resulted in the down-regulation of fucosyltransferase expression, reflected by altered glycosylation at the MS lesion site. Indeed, removal of fucose on myelin reduced DC-SIGN-dependent homeostatic control, and resulted in inflammasome activation, increased T cell proliferation, and differentiation toward a Th17-prone phenotype. These data demonstrate a new role for myelin glycosylation in the control of immune homeostasis in the healthy human brain through the MOG-DC-SIGN homeostatic regulatory axis, which is comprised by inflammatory insults that affect glycosylation. This phenomenon should be considered as a basis to restore immune tolerance in MS.


Subject(s)
Brain/immunology , Cell Adhesion Molecules/immunology , Immune Tolerance/physiology , Inflammasomes/immunology , Lectins, C-Type/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Receptors, Cell Surface/immunology , Th17 Cells/immunology , Animals , Brain/cytology , CHO Cells , Cell Adhesion Molecules/genetics , Cell Proliferation , Cricetinae , Cricetulus , Female , Humans , Inflammasomes/genetics , Inflammation Mediators/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Lectins, C-Type/genetics , Male , Myelin-Oligodendrocyte Glycoprotein/genetics , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/immunology , Receptors, Cell Surface/genetics , Th17 Cells/cytology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
2.
Mult Scler ; 18(8): 1058-67, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22723572

ABSTRACT

Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.


Subject(s)
Axons/metabolism , Energy Metabolism , Mitochondria/metabolism , Multiple Sclerosis/metabolism , Nerve Degeneration , Neurogenesis , Animals , Axons/pathology , Biomarkers/metabolism , Humans , Mitochondria/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy , Prognosis
3.
Neuropathol Appl Neurobiol ; 37(6): 654-71, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21501208

ABSTRACT

AIMS: Multiple sclerosis (MS) is a chronic progressive degenerative disorder of the central nervous system, characterized by inflammation, demyelination, ultimate failure of remyelination and axonal loss. Current research identifies galectins, adhesion/growth-regulatory effectors binding ß-galactosides, peptide motifs and lipids, as important immunomodulators in diverse inflammatory diseases. However, little is known about their expression, cellular localization and role in human central nervous system tissue. To identify a potential role of galectins in MS, their expression and localization in control white matter (CWM) and demyelinated MS lesions were examined. METHODS: qPCR, Western blot and immunohistochemical analyses were performed on human post mortem CWM and MS lesions at different stages. Cultured astrocytes, derived from healthy subjects and MS patients, were analysed similarly. RESULTS: Among 11 different galectins tested, galectins-1, -3, -8 and -9 were present at detectable levels in CWM, and, interestingly, significantly enhanced in active MS lesions. On the cellular level, galectins localized to microglia/macrophages, astrocytes and endothelial cells. Intriguingly, galectin-9 displayed a distinctly different intracellular localization in microglia/macrophages when comparing active and inactive MS lesions, being restricted to the nuclei in active lesions, and primarily localizing in the cytoplasm in inactive lesions. Furthermore, enhanced levels of galectin-1, detected as dimers in Western blot analysis, were released by cultured astrocytes from MS patients. CONCLUSIONS: This study provides a detailed analysis of galectins in MS lesions and assigns distinct galectins to different aspects of the disease. Thus, besides being known as modulators of inflammatory processes, our findings suggest additional association of distinct galectins with MS pathology.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Galectins/metabolism , Multiple Sclerosis/metabolism , Nerve Fibers, Myelinated/metabolism , Adult , Aged , Aged, 80 and over , Astrocytes/pathology , Brain/pathology , Cells, Cultured , Female , Humans , Male , Microglia/metabolism , Microglia/pathology , Middle Aged , Multiple Sclerosis/pathology , Nerve Fibers, Myelinated/pathology
4.
Neuropathol Appl Neurobiol ; 35(3): 283-95, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19473295

ABSTRACT

BACKGROUND: In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. AIMS: To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. METHODS: Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. RESULTS: Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. CONCLUSIONS: In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.


Subject(s)
Extracellular Space/chemistry , Meninges/chemistry , Meninges/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Proteins/analysis , Myelin Sheath/pathology , Adolescent , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/pathology , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/blood supply , Brain/metabolism , Child , Child, Preschool , Dendritic Cells/metabolism , Female , Humans , Macrophages/metabolism , Male , Meningitis/metabolism , Meningitis/pathology , Middle Aged , Myelin Sheath/chemistry , Stroke/metabolism , Stroke/pathology
5.
Free Radic Biol Med ; 45(12): 1729-37, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18930811

ABSTRACT

Reactive oxygen species (ROS) and subsequent oxidative damage may contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. ROS initiate lesion formation by inducing blood-brain barrier disruption, enhance leukocyte migration and myelin phagocytosis, and contribute to lesion persistence by mediating cellular damage to essential biological macromolecules of vulnerable CNS cells. Relatively little is known about which CNS cell types are affected by oxidative injury in MS lesions. Here, we show the presence of extensive oxidative damage to proteins, lipids, and nucleotides occurring in active demyelinating MS lesions, predominantly in reactive astrocytes and myelin-laden macrophages. Oxidative stress can be counteracted by endogenous antioxidant enzymes that confer protection against oxidative damage. Here, we show that antioxidant enzymes, including superoxide dismutase 1 and 2, catalase, and heme oxygenase 1, are markedly upregulated in active demyelinating MS lesions compared to normal-appearing white matter and white matter tissue from nonneurological control brains. Particularly, hypertrophic astrocytes and myelin-laden macrophages expressed an array of antioxidant enzymes. Enhanced antioxidant enzyme production in inflammatory MS lesions may reflect an adaptive defense mechanism to reduce ROS-induced cellular damage.


Subject(s)
Antioxidants/metabolism , Catalase/metabolism , Heme Oxygenase-1/metabolism , Multiple Sclerosis/enzymology , Multiple Sclerosis/pathology , Oxidative Stress , Superoxide Dismutase/metabolism , Adult , Aged , Aged, 80 and over , Astrocytes/enzymology , Brain/enzymology , Brain/pathology , Case-Control Studies , Female , Humans , Immunoenzyme Techniques , Macrophages/enzymology , Male , Middle Aged , Superoxide Dismutase-1
6.
Neuropathol Appl Neurobiol ; 32(6): 585-93, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17083473

ABSTRACT

Matrix metalloproteinases (MMPs) are proteases known for their capacity to degrade extracellular matrix (ECM) components. MMPs have been implicated in several central nervous system (CNS) diseases, including multiple sclerosis (MS). Microarray analysis has demonstrated significant increased mRNA levels of MMP-19 in chronic MS lesions, suggesting a role of MMP-19 in MS pathogenesis. Therefore, in this study, we investigated the expression pattern and cellular localization of MMP-19 protein in various well-characterized MS lesion stages. In normal control patient white matter, MMP-19 was constitutively expressed by microglia throughout the brain parenchyma, suggesting a physiological role for this MMP family member. Likewise, MMP-19 was expressed by microglia in (p)reactive MS lesions, albeit more intense. In highly active demyelinating MS lesions, parenchymal and perivascular myelin-laden macrophages were strongly immunoreactive for MMP-19, whereas reactive astrocytes were occasionally immunopositive. Astrocytes in chronic inactive lesions were weakly stained for MMP-19. In vitro, MMP-19 was expressed in cultures of primary human microglia, not in astrocyte cultures. As MMP-19 is able to degrade basement membrane constituents and other ECM proteins, it is conceivable that this relatively novel MMP family member contributes to MS pathology by remodelling the ECM of the CNS, thereby influencing leucocyte infiltration, axonal regeneration and astrogliosis.


Subject(s)
Brain/pathology , Metalloendopeptidases/biosynthesis , Multiple Sclerosis/enzymology , Astrocytes/metabolism , Brain/enzymology , Humans , Immunohistochemistry , Macrophages/metabolism , Matrix Metalloproteinases, Secreted , Microglia/metabolism , Middle Aged
7.
Neuropathol Appl Neurobiol ; 32(5): 492-504, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16972883

ABSTRACT

Molecular chaperons or amyloid-associated proteins (AAPs) are deposited in vascular and parenchymal amyloid lesions in Alzheimer's disease (AD) and other amyloidoses. AAPs, such as apolipoprotein E (ApoE) or apolipoprotein J (ApoJ) have been strongly implicated in the pathogenesis of AD in vitro and in vivo. Furthermore the possession of the ApoE in4 allele is a well-studied risk factor for AD. In view of the similarities between AD and both familial British dementia (FBD) and familial Danish dementia (FDD), we investigated the presence of AAPs in these two diseases to understand better their role in the general process of amyloidogenesis. Immunohistochemistry for ApoE, ApoJ, serum amyloid P (SAP), alpha-1-antichymotrypsin, cystatin C, heparan sulphate proteoglycans, such as agrin, perlecan, syndecans, glypican-1 and for heparan sulphate glycosaminoglycan (HS GAG) side chains was carried out together with immunohistochemical preparations specific to the amyloid subunits. Significant or extensive staining for ApoE, ApoJ, agrin, glypican-1 and HS GAG side chains was found in both amyloid (fibrillar) and preamyloid (nonfibrillar) deposits in FBD and FDD. The remaining AAPs, including SAP, were predominantly found in amyloid lesions. Only very weak staining was present in a small proportion of the amyloid lesions using perlecan immunohistochemistry. These findings suggest that the deposition patterns of AAPs in FBD and FDD are mostly similar to those in AD. The presence of AAPs in the preamyloid lesions supports the notion that chaperon molecules may play a role in the early steps of fibrillogenesis.


Subject(s)
Amyloid Neuropathies/pathology , Dementia/genetics , Dementia/pathology , Molecular Chaperones/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/genetics , Amyloid/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Immunohistochemistry , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Conformation , Proteoglycans/metabolism , Serum Amyloid P-Component/metabolism , Syndecans , alpha 1-Antichymotrypsin/metabolism
8.
Acta Neuropathol ; 102(6): 604-14, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11761721

ABSTRACT

Cerebrovascular deposition of amyloid beta protein (A beta) is a characteristic lesion of Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). Besides A beta, several other proteins and proteoglycans accumulate in cerebral amyloid angiopathy (CAA). We have now analyzed the expression of the heparan sulfate proteoglycan (HSPG) subtypes agrin, perlecan, glypican-1, syndecans 1-3 and HS glycosaminoglycan (GAG) side chains in CAA in brains of patients with AD and HCHWA-D. Hereto, specific well-characterized antibodies directed against the core protein of these HSPGs and against the GAG side chains were used for immunostaining. Glypican-1 was abundantly expressed in CAA both in AD and HCHWA-D brains, whereas perlecan and syndecans-1 and -3 were absent in both. Colocalization of agrin with vascular A beta was clearly observed in CAA in HCHWA-D brains, but only in a minority of the AD cases. Conversely, syndecan-2 was frequently associated with vascular A beta in AD, but did not colocalize with vascular A beta deposits in HCHWA-D. The three different syndecans, agrin, glypican-1 and HS GAG, but not perlecan, were associated with the majority of senile plaques (SPs) in all brains. Our results suggest a role for agrin in the formation of SPs and of CAA in HCHWA-D, but not in the pathogenesis of CAA in AD. Both syndecan-2 and glypican, but not perlecan, may be involved in the formation of CAA. We conclude that specific HSPG species may be involved in the pathogenesis of CAA in both AD and HCHWA-D, and that the pathogenesis of CAA and SPs may differ with regard to the involvement of HSPG species.


Subject(s)
Alzheimer Disease/pathology , Brain/blood supply , Brain/pathology , Cerebral Amyloid Angiopathy, Familial/pathology , Cerebral Arteries/pathology , Heparan Sulfate Proteoglycans/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Agrin/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy, Familial/physiopathology , Cerebral Arteries/physiopathology , Female , Glycosaminoglycans/metabolism , Glypicans , Humans , Immunohistochemistry , Male , Membrane Glycoproteins/metabolism , Middle Aged , Proteoglycans/metabolism , Syndecans
SELECTION OF CITATIONS
SEARCH DETAIL
...