Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(4): 040603, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30095948

ABSTRACT

One of the general mechanisms that give rise to the slow cooperative relaxation characteristic of classical glasses is the presence of kinetic constraints in the dynamics. Here we show that dynamical constraints can similarly lead to slow thermalization and metastability in translationally invariant quantum many-body systems. We illustrate this general idea by considering two simple models: (i) a one-dimensional quantum analogue to classical constrained lattice gases where excitation hopping is constrained by the state of neighboring sites, mimicking excluded-volume interactions of dense fluids; and (ii) fully packed quantum dimers on the square lattice. Both models have a Rokhsar-Kivelson (RK) point at which kinetic and potential energy constants are equal. To one side of the RK point, where kinetic energy dominates, thermalization is fast. To the other, where potential energy dominates, thermalization is slow, memory of initial conditions persists for long times, and separation of timescales leads to pronounced metastability before eventual thermalization. Furthermore, in analogy with what occurs in the relaxation of classical glasses, the slow-thermalization regime displays dynamical heterogeneity as manifested by spatially segregated growth of entanglement.

2.
Article in English | MEDLINE | ID: mdl-25871079

ABSTRACT

We consider an extension of classical stochastic reaction-diffusion (RD) dynamics to open quantum systems. We study a class of models of hard-core particles on a one-dimensional lattice whose dynamics is generated by a quantum master operator. Particle hopping is coherent while reactions, such as pair annihilation or pair coalescence, are dissipative. These are quantum open generalizations of the A+A→⌀ and A+A→A classical RD models. We characterize the relaxation of the state towards the stationary regime via a decomposition of the system Hilbert space into transient and recurrent subspaces. We provide a complete classification of the structure of the recurrent subspace (and the nonequilibrium steady states) in terms of the dark states associated to the quantum master operator and its general spectral properties. We also show that, in one dimension, relaxation towards these absorbing dark states is slower than that predicted by a mean-field analysis due to fluctuation effects, in analogy with what occurs in classical RD systems. Numerical simulations of small systems suggest that the decay of the density in one dimension, in both the open quantum A+A→⌀ and A+A→A systems, behaves asymptotically as t-b with 1/2

3.
Phys Rev Lett ; 110(15): 150401, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167231

ABSTRACT

We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

4.
Philos Trans A Math Phys Eng Sci ; 370(1979): 5308-23, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23091210

ABSTRACT

System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...