Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Benef Microbes ; 9(5): 707-715, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-29798708

ABSTRACT

The rapid rise in microbiome and probiotic science has led to estimates of product creation and sales exceeding $50 billion within five years. However, many people do not have access to affordable products, and regulatory agencies have stifled progress. The objective of a discussion group at the 2017 meeting of the International Scientific Association for Probiotics and Prebiotics was to identify mechanisms to confer the benefits of probiotics to a larger portion of the world's population. Three initiatives, built around fermented food, were discussed with different methods of targeting populations that face enormous challenges of malnutrition, infectious disease, poverty and violent conflict. As new candidate probiotic strains emerge, and the market diversifies towards more personalised interventions, manufacturing processes will need to evolve. Information dissemination through scientific channels and social media is projected to provide consumers and healthcare providers with rapid access to clinical results, and to identify the nearest location of sites making new and affordable probiotic food and supplements. This rapid translation of science to individual well-being will not only expand the beneficiaries of probiotics, but also fuel new social enterprises and economic business models.


Subject(s)
Dietary Supplements/economics , Probiotics/economics , Public Sector/economics , Dietary Supplements/analysis , Fermented Foods/analysis , Fermented Foods/economics , Humans , Models, Economic , Probiotics/analysis
2.
Gut Microbes ; 6(1): 1-9, 2015.
Article in English | MEDLINE | ID: mdl-25517879

ABSTRACT

Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Clostridium/physiology , Intestinal Mucosa/physiology , Lacticaseibacillus rhamnosus/physiology , Permeability/drug effects , Probiotics/administration & dosage , Animal Experimentation , Animals , Caco-2 Cells , Clostridium/growth & development , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Gene Expression Profiling , Humans , Intestinal Mucosa/drug effects , Lacticaseibacillus rhamnosus/growth & development , Male , Mice, Inbred C57BL , Tight Junction Proteins/biosynthesis , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism
3.
J Dairy Sci ; 92(12): 5868-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19923591

ABSTRACT

Cheese making is a process in which enzymatic coagulation of milk is followed by protein separation, carbohydrate removal, and an extended bacterial fermentation. The number of variables in this complex process that influence cheese quality is so large that the developments of new manufacturing protocols are cumbersome. To reduce screening costs, several models have been developed to miniaturize the cheese manufacturing process. However, these models are not able to accommodate the throughputs required for systematic screening programs. Here, we describe a protocol that allows the parallel manufacturing of approximately 600 cheeses in individual cheese vats each with individual process specifications. Protocols for the production of miniaturized Gouda- and Cheddar-type cheeses have been developed. Starting with as little as 1.7 mL of milk, miniature cheeses of about 170 mg can be produced and they closely resemble conventionally produced cheese in terms of acidification profiles, moisture and salt contents, proteolysis, flavor profiles, and microstructure. Flavor profiling of miniature cheeses manufactured with and without mixed-strain adjunct starter cultures allowed the distinguishing of the different cheeses. Moreover, single-strain adjunct starter cultures engineered to overexpress important flavor-related enzymes revealed effects similar to those described in industrial cheese. Benchmarking against industrial cheese produced from the same raw materials established a good correlation between their proteolytic degradation products and their flavor profiles. These miniature cheeses, referred to as microcheeses, open new possibilities to study many aspects of cheese production, which will not only accelerate product development but also allow a more systematic approach to investigate the complex biochemistry and microbiology of cheese making.


Subject(s)
Cheese/microbiology , Cheese/standards , Food Handling/methods , Bacteria/growth & development , Bacterial Physiological Phenomena , Cheese/analysis , Colony Count, Microbial , Hydrogen-Ion Concentration , Reproducibility of Results , Time Factors
4.
J Appl Microbiol ; 97(2): 306-13, 2004.
Article in English | MEDLINE | ID: mdl-15239696

ABSTRACT

AIM: Development of a fast, automated and reliable screening method for screening of large collections of bacterial strains with minimal handling time. METHODS AND RESULTS: The method is based on the injection of a small headspace sample (100 microl) from culture vials (2 ml) in 96-well format directly into the mass spectrometry (MS). A special sample tray has been developed for liquid media, and anaerobically grown cultures. In principle, all volatile components can be measured, but a representative mass fragment has to be obtained in the MS. Representative masses for 3-methylbutanal, 2-methylpropanal and benzaldehyde are 58, 72 and 105, respectively. In 1 day over 1500 samples could be analysed and the coefficient of variation for the response was <5%. CONCLUSION: Screening of 72 strains belonging to the genus Lactococcus in quadruple on the production of the key-flavour compound 3-methylbutanal illustrated the effectiveness of the method. Furthermore, knowledge of the biochemistry and physiology of 3-methylbutanal formation was used to optimize the composition of the growth medium to enhance 3-methylbutanal production, and thereby improve the screening. SIGNIFICANCE AND IMPACT OF THE STUDY: A commonly used method to control flavour formation in fermented food products is the selection of bacterial strains, which are able to produce the desired flavour compounds. As large collections of strains are available for such screenings, studying biodiversity of micro-organisms on the level of metabolic routes is strongly facilitated by highly automated high throughput screening methods for measuring enzyme activities or production of metabolites. Therefore, this method will be a useful tool for selecting flavour-producing strains and for enhancing starter culture development.


Subject(s)
Aldehydes/analysis , Flavoring Agents/analysis , Food Microbiology , Lactococcus lactis/metabolism , Benzaldehydes/analysis , Culture Media , Fermentation , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...