Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001004

ABSTRACT

The survival and growth of young plants hinge on various factors, such as seed quality and environmental conditions. Assessing seedling potential/vigor for a robust crop yield is crucial but often resource-intensive. This study explores cost-effective imaging techniques for rapid evaluation of seedling vigor, offering a practical solution to a common problem in agricultural research. In the first phase, nine lettuce (Lactuca sativa) cultivars were sown in trays and monitored using chlorophyll fluorescence imaging thrice weekly for two weeks. The second phase involved integrating embedded computers equipped with cameras for phenotyping. These systems captured and analyzed images four times daily, covering the entire growth cycle from seeding to harvest for four specific cultivars. All resulting data were promptly uploaded to the cloud, allowing for remote access and providing real-time information on plant performance. Results consistently showed the 'Muir' cultivar to have a larger canopy size and better germination, though 'Sparx' and 'Crispino' surpassed it in final dry weight. A non-linear model accurately predicted lettuce plant weight using seedling canopy size in the first study. The second study improved prediction accuracy with a sigmoidal growth curve from multiple harvests (R2 = 0.88, RMSE = 0.27, p < 0.001). Utilizing embedded computers in controlled environments offers efficient plant monitoring, provided there is a uniform canopy structure and minimal plant overlap.


Subject(s)
Germination , Lactuca , Seedlings , Lactuca/growth & development , Lactuca/physiology , Germination/physiology , Seedlings/growth & development , Seedlings/physiology , Chlorophyll/analysis , Chlorophyll/metabolism , Seeds/growth & development , Seeds/physiology
2.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001005

ABSTRACT

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Subject(s)
Germination , Gibberellins , Lactuca , Seedlings , Seeds , Gibberellins/pharmacology , Lactuca/growth & development , Lactuca/drug effects , Seedlings/drug effects , Seedlings/growth & development , Germination/drug effects , Germination/physiology , Seeds/drug effects , Seeds/growth & development , Salt Stress/drug effects , Sodium Chloride/pharmacology
3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001015

ABSTRACT

The decline in seed quality over time due to natural aging or mishandling requires assessing seed vigor for resilience in adverse conditions. Accelerated aging (AA) methods simulate seed deterioration by subjecting seeds to high temperatures and humidity. Saturated salt accelerated aging (SSAA) is an AA method adopted for small seeds like lettuce (Lactuca sativa). In this study, we subjected seeds of two lettuce cultivars ('Muir' and 'Bauer') to SSAA by sealing them in a box containing 40 g/100 mL of a sodium chloride (NaCl) solution in a dark growth chamber at 41 °C for 24, 48, and 72 h with a control. We monitored their vigor using embedded computer cameras, tracking the projected canopy size (PCS) daily from sowing to harvest. The cultivar 'Muir' exhibited consistent PCS values across the treatments, while 'Bauer' showed PCS variations, with notable declines after prolonged aging. The germination rates dropped significantly after 48 and 72 h of SSAA. A nonlinear regression model revealed a strong relationship between PCS and shoot dry weight across harvests and cultivars (R2 = 0.93, RMSE = 0.15, p < 0.001). The research found that the projected canopy size and shoot dry weight increased over time with significant differences in treatments for the cultivar 'Bauer' but not for 'Muir,' with the canopy size being a strong predictor of dry weight and no significant impact from the SSAA treatments. This study highlights cultivar-specific responses to aging and demonstrates the efficacy of our imaging tool in predicting lettuce dry weight despite treatment variations. Understanding how aging affects different lettuce varieties is crucial for seed management and crop sustainability.


Subject(s)
Germination , Lactuca , Seedlings , Seeds , Lactuca/growth & development , Lactuca/physiology , Germination/physiology , Seeds/growth & development , Seeds/physiology , Seedlings/growth & development , Seedlings/physiology
4.
Plants (Basel) ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475498

ABSTRACT

The sunlight greenhouse crops receive varies and is often insufficient for consistent year-round growth in greenhouses. Supplemental lighting is commonly applied in winter, but this practice has a significant energy cost, accounting for 10-30% of operating expenses and impacting greenhouse profitability. Greenhouse lights are traditionally adjusted based on sunlight intensity to meet crops' daily light requirements. However, if plants can withstand lower daily light integrals (DLI) after a sunny day without reducing the growth, there is potential to reduce the energy required for supplemental lighting and increase the profit. To determine whether excess light received one day can be 'carried over' to the next, we grew oakleaf lettuce (Lactuca sativa 'Green Salad Bowl' and 'Red Salad Bowl') under six lighting regimes inside a vertical farm. Plants in all treatments received an average DLI of 15 mol·m-2·d-1, but DLIs alternated from day-to-day (15/15, 17.5/12.5, 20/10, 22.5/7.5, 25/5, and 27.5/2.5 mol·m-2·d-1), resulting in DLI fluctuations from 0 to 25 mol·m-2·d-1. Plants had similar leaf area (~800 cm2/plant) and dry weight (~1.8 g/plant) when grown with DLI fluctuations from 0 to 15 mol·m-2·d-1, while higher DLI fluctuation reduced growth. To confirm this DLI "carrying-over" effect on plants grown under sunlight with supplemental light, we conducted a second study in a greenhouse with 'Green Salad Bowl' lettuce. In this study, plants were grown with five different DLI fluctuations (15/15, 16.75/13.25, 18.5/11.5, 20.25/9.75, and 22/8 mol·m-2·d-1), ranging from 0 to 14 mol·m-2·d-1, while maintaining an average DLI of 15 mol·m-2·d-1 in all the treatments. We observed similar leaf area (~750 cm2/plant) and dry weight (~1.8 g/plant) in lettuce plants grown with DLI fluctuations from 0 to 10.5 mol·m-2·d-1. Higher DLI fluctuations reduced growth. Hence, carrying excess light from a sunny to an overcast day is possible within limits. Our study concluded that the DLI requirement can be reduced by approximately 5.25 mol·m-2·d-1 on the day following a sunny day. By analyzing historical weather data from five US locations, we quantified the potential annual energy savings from incorporating this 'carrying-over DLI' concept. This approach resulted in annual energy savings of approximately 75-190 MWh/ha in greenhouse lettuce production. Such reductions in supplemental lighting energy will enhance the profitability and sustainability of the greenhouse industry.

5.
Front Plant Sci ; 14: 1183249, 2023.
Article in English | MEDLINE | ID: mdl-37324677

ABSTRACT

Industrial hemp (Cannabis sativa L.) has demonstrated promise for phytoremediation due to an extensive root system, large biomass, and ability to survive under relatively high levels of heavy metals. However, little research has been conducted to determine the impact of heavy metal uptake in hemp grown for medicinal use. This study evaluated the potential for cadmium (Cd) uptake and its impact on growth, physiological responses, and transcript expression of metal transporter genes in a hemp variety grown for flower production. The cultivar 'Purple Tiger' was exposed to 0, 2.5, 10, and 25 mg·L-1 Cd in a greenhouse hydroponic study in two independent experiments. Plants exposed to 25 mg·L-1 Cd displayed stunted plant growth characteristics, reduced photochemical efficiency, and premature senescence suggesting Cd toxicity. At the two lower concentrations of Cd (2.5 and 10 mg·L-1 Cd), plant height, biomass, and photochemical efficiency were not affected, with chlorophyll content index (CCI) being slightly lower at 10 mg·L-1 Cd, compared to 2.5 mg·L-1 Cd. There were no consistent differences between the two experiments in total cannabidiol (CDB) and tetrahydrocannabinol (THC) concentrations in flower tissues at 2.5 and 10 mg·L-1 Cd, compared to the control treatment. Root tissue accumulated the highest amount of Cd compared to other tissues for all the Cd treatments, suggesting preferential root sequestration of this heavy metal in hemp. Transcript abundance analysis of heavy metal-associated (HMA) transporter genes suggested that all seven members of this gene family are expressed in hemp, albeit with higher expression in the roots than in the leaves. In roots, CsHMA3 was up-regulated at 45 and 68 d after treatment (DAT), and CsHMA1, CsHMA4, and CsHMA5 were upregulated only under long term Cd stress at 68 DAT, at 10 mg·L-1 Cd. Results suggest that expression of multiple HMA transporter genes in the root tissue may be upregulated in hemp exposed to 10 mg·L-1 Cd in a nutrient solution. These transporters could be involved in Cd uptake in the roots via regulating its transport and sequestration, and xylem loading for long distance transport of Cd to shoot, leaf, and flower tissues.

6.
Front Plant Sci ; 14: 1155722, 2023.
Article in English | MEDLINE | ID: mdl-37077649

ABSTRACT

Anthocyanins provide blue, red, and purple color to fruits, vegetables, and flowers. Due to their benefits for human health and aesthetic appeal, anthocyanin content in crops affects consumer preference. Rapid, low-cost, and non-destructive phenotyping of anthocyanins is not well developed. Here, we introduce the normalized difference anthocyanin index (NDAI), which is based on the optical properties of anthocyanins: high absorptance in the green and low absorptance in the red part of the spectrum. NDAI is determined as (Ired - Igreen)/(Ired + Igreen), where I is the pixel intensity, a measure of reflectance. To test NDAI, leaf discs of two red lettuce (Lactuca sativa) cultivars 'Rouxai' and 'Teodore' with wide range of anthocyanin concentrations were imaged using a multispectral imaging system and the red and green images were used to calculate NDAI. NDAI and other commonly used indices for anthocyanin quantification were evaluated by comparing to with the measured anthocyanin concentration (n = 50). Statistical results showed that NDAI has advantages over other indices in terms of prediction of anthocyanin concentrations. Canopy NDAI, obtained using multispectral canopy imaging, was correlated (n = 108, R2 = 0.73) with the anthocyanin concentrations of the top canopy layer, which is visible in the images. Comparison of canopy NDAI from multispectral images and RGB images acquired using a Linux-based microcomputer with color camera, showed similar results in the prediction of anthocyanin concentration. Thus, a low-cost microcomputer with a camera can be used to build an automated phenotyping system for anthocyanin content.

7.
Plants (Basel) ; 11(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297739

ABSTRACT

Understanding crop responses to the light spectrum is critical for optimal indoor production. Far-red light is of particular interest, because it can accelerate growth through both physiological and morphological mechanisms. However, the optimal amount of supplemental far-red light for indoor lettuce production is yet to be quantified. Lettuce 'Cherokee', 'Green SaladBowl', and 'Little Gem' were grown under 204 µmol·m-2·s-1 warm-white light-emitting diodes (LEDs) with supplemental far-red ranging from 5.3 to 75.9 µmol·m-2·s-1. Supplemental far-red light increased canopy light interception 5 days after the start of far-red light treatment (DAT) for 'Green SaladBowl' and 'Little Gem' and 7 DAT for 'Cherokee'. The increase in light interception was no longer evident after 12 and 16 DAT for 'Green SaladBowl' and 'Little Gem', respectively. We did not find evidence that supplemental far-red light increased leaf-level photosynthesis. At the final harvest, shoot dry weights of 'Cherokee' and 'Little Gem' increased by 39.4% and 19.0%, respectively, while 'Green SaladBowl' was not affected. In conclusion, adding far-red light in indoor production increased light interception during early growth and likely increased whole plant photosynthesis thus growth, but those effects were cultivar-specific; the increase in dry weight was linear up to 75.9 µmol·m-2·s-1 far-red light.

8.
New Phytol ; 236(2): 538-546, 2022 10.
Article in English | MEDLINE | ID: mdl-35832002

ABSTRACT

The current definition of photosynthetically active radiation includes only photons from 400 up to 700 nm, despite evidence of the synergistic interaction between far-red photons and shorter-wavelength photons. The synergy between far-red and shorter-wavelength photons has not been studied in sunlight under natural conditions. We used a filter to remove photons above 700 nm to quantify the effects on photosynthesis in diverse species under full sun, medium light intensity and vegetation shade. Far-red photons (701 to 750 nm) in sunlight are used efficiently for photosynthesis. This is especially important for leaves in vegetation shade, where far-red photons can be > 50% of the total incident photons between 400 and 750 nm. Far-red photons accounted for 24-25% of leaf gross photosynthesis (Pgross ) in a C3 and a C4 species when sunlight was filtered through a leaf, and 10-14% of leaf Pgross in a tree and an understory species in deep shade. Accounting for the photosynthetic activity of far-red photons is critical for accurate measurement and modeling of photosynthesis at single leaf, canopy and ecosystem scales. This, in turn, is crucial in understanding crop productivity, the global carbon cycle and climate change impacts on agriculture and ecosystems.


Subject(s)
Ecosystem , Sunlight , Light , Photosynthesis/radiation effects , Plant Leaves/radiation effects
9.
Plants (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34961123

ABSTRACT

Global population growth has increased food production challenges and pushed agricultural systems to deploy the Internet of Things (IoT) instead of using conventional approaches. Controlling the environmental parameters, including light, in greenhouses increases the crop yield; nonetheless, the electricity cost of supplemental lighting can be high, and hence, the importance of applying cost-effective lighting methods arises. In this research paper, a new optimal supplemental lighting approach was developed and implemented in a research greenhouse by adopting IoT technology. The proposed approach minimizes electricity cost by leveraging a Markov-based sunlight prediction, plant light needs, and a variable electricity price profile. Two experimental studies were conducted inside a greenhouse with "Green Towers" lettuce (Lactuca sativa) during winter and spring in Athens, GA, USA. The experimental results showed that compared to a heuristic method that provides light to reach a predetermined threshold at each time step, our strategy reduced the cost by 4.16% and 33.85% during the winter and spring study, respectively. A paired t-test was performed on the growth parameter measurements; it was determined that the two methods did not have different results in terms of growth. In conclusion, the proposed lighting approach reduced electricity cost while maintaining crop growth.

10.
Sensors (Basel) ; 21(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804000

ABSTRACT

Plants naturally contain high levels of the stress-responsive fluorophore chlorophyll. Chlorophyll fluorescence imaging (CFI) is a powerful tool to measure photosynthetic efficiency in plants and provides the ability to detect damage from a range of biotic and abiotic stresses before visible symptoms occur. However, most CFI systems are complex, expensive systems that use pulse amplitude modulation (PAM) fluorometry. Here, we test a simple CFI system, that does not require PAM fluorometry, but instead simply images fluorescence emitted by plants. We used this technique to visualize stress induced by the photosystem II-inhibitory herbicide atrazine. After applying atrazine as a soil drench, CFI and color images were taken at 15-minute intervals, alongside measurements from a PAM fluorometer and a leaf reflectometer. Pixel intensity of the CFI images was negatively correlated with the quantum yield of photosystem II (ΦPSII) (p < 0.0001) and positively correlated with the measured reflectance in the spectral region of chlorophyll fluorescence emissions (p < 0.0001). A fluorescence-based stress index was developed using the reflectometer measurements based on wavelengths with the highest (741.2 nm) and lowest variability (548.9 nm) in response to atrazine damage. This index was correlated with ΦPSII (p < 0.0001). Low-cost CFI imaging can detect herbicide-induced stress (and likely other stressors) before there is visual damage.


Subject(s)
Atrazine , Chlorophyll , Atrazine/toxicity , Fluorescence , Optical Imaging , Photosynthesis , Photosystem II Protein Complex/metabolism
11.
Plants (Basel) ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917457

ABSTRACT

Vertical farming is increasingly popular due to high yields obtained from a small land area. However, the energy cost associated with lighting of vertical farms is high. To reduce this cost, more energy efficient (biomass/energy use) crops are required. To understand how efficiently crops use light energy to produce biomass, we determined the morphological and physiological differences between mizuna (Brassica rapa var. japonica) and lettuce (Lactuca sativa 'Green Salad Bowl'). To do so, we measured the projected canopy size (PCS, a morphological measure) of the plants throughout the growing cycle to determine the total amount of incident light the plants received. Total incident light was used together with the final dry weight to calculate the light use efficiency (LUE, g of dry weight/mol of incident light), a physiological measure. Plants were grown under six photosynthetic photon flux densities (PPFD), from 50 to 425 µmol m-2 s-1, for 16 h d-1. Mizuna and lettuce were harvested 27 and 28 days after seeding, respectively. Mizuna had greater dry weight than lettuce (p < 0.0001), especially at higher PPFDs (PPFD ≥ 125 µmol m-2 s-1), partly because of differences in the projected canopy size (PCS). Mizuna had greater PCS than lettuce at PPFDs ≥ 125 µmol m-2 s-1 and therefore, the total incident light over the growing period was also greater. Mizuna also had a higher LUE than lettuce at all six PPFDs. This difference in LUE was associated with higher chlorophyll content index and higher quantum yield of photosystem II in mizuna. The combined effects of these two factors resulted in higher photosynthetic rates in mizuna than in lettuce (p = 0.01). In conclusion, the faster growth of mizuna is the result of both a larger PCS and higher LUE compared to lettuce. Understanding the basic determinants of crop growth is important when screening for rapidly growing crops and increasing the efficiency of vertical farms.

12.
Front Plant Sci ; 12: 619987, 2021.
Article in English | MEDLINE | ID: mdl-33747002

ABSTRACT

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (A n) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf A n of "Green Tower" lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 µmol⋅m-2⋅s-1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (V c,max) at low (200 µmol⋅m-2⋅s-1) and high PPFD (1,000 µmol⋅m-2⋅s-1) were estimated from photosynthetic CO2 response curves. Both QY m,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QY m,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QY m,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QY inc [gross CO2 assimilation (A g)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. V c,max may not limit photosynthesis at a PPFD of 200 µmol m-2 s-1 and was largely unaffected by light spectrum at 1,000 µmol⋅m-2⋅s-1. A g and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QY inc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.

13.
Front Plant Sci ; 12: 619973, 2021.
Article in English | MEDLINE | ID: mdl-33584773

ABSTRACT

The cost of providing lighting in greenhouses and plant factories can be high. In the case of variable electricity prices, providing most of the light when electricity prices are low can reduce costs. However, it is not clear how plants respond to the resulting fluctuating light levels. We hypothesized that plants that receive a constant photosynthetic photon flux density (PPFD) will produce more biomass than those grown under fluctuating light levels. To understand potential growth reductions caused by fluctuating light levels, we quantified the effects of fluctuating PPFD on the photosynthetic physiology, morphology, and growth of 'Little Gem' and 'Green Salad Bowl' lettuce. Plants were grown in a growth chamber with dimmable white LED bars, alternating between high and low PPFDs every 15 min. The PPFDs were ∼400/0, 360/40, 320/80, 280/120, 240/160, and 200/200 µmol⋅m-2⋅s-1, with a photoperiod of 16 h and a DLI of ∼11.5 mol⋅m-2⋅day-1 in all treatments. CO2 was ∼800 µmol⋅mol-1. Plants in the 400/0 µmol⋅m-2⋅s-1 treatment had ∼69% lower An,30 (net assimilation averaged over 15 min at high and 15 min at low PPFD) than plants grown at a PPFD of 320/80 µmol⋅m-2⋅s-1 (or treatments with smaller PPFD fluctuations). The low An,30 in the 400/0, and to a lesser extent the 360/40 µmol⋅m-2⋅s-1 treatment was caused by low net assimilation at 360 and 400 µmol⋅m-2⋅s-1. Plants grown at 400/0 µmol⋅m-2⋅s-1 also had fewer leaves and lower chlorophyll content compared to those in other treatments. The four treatments with the smallest PPFD fluctuations produced plants with similar numbers of leaves, chlorophyll content, specific leaf area (SLA), dry mass, and leaf area. Chlorophyll content, An,30, and dry mass were positively correlated with each other. Our results show that lettuce tolerates a wide range of fluctuating PPFD without negative effects on growth and development. However, when fluctuations in PPFD are extreme (400/0 or 360/40 µmol⋅m-2⋅s-1), chlorophyll levels and An,30 are low, which can explain the low poor growth in these treatments. The ability of lettuce to tolerate a wide range of fluctuating light levels suggests that PPFD can be adjusted in response to variable electricity pricing.

14.
Plants (Basel) ; 10(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467138

ABSTRACT

Light-emitting diodes allow for the application of specific wavelengths of light to induce various morphological and physiological responses. In lettuce (Lactuca sativa), far-red light (700-800 nm) is integral to initiating shade responses which can increase plant growth. In the first of two studies, plants were grown with a similar photosynthetic photon flux density (PPFD) but different intensities of far-red light. The second study used perpendicular gradients of far-red light and PPFD, allowing for examination of interactive effects. The far-red gradient study revealed that increasing supplemental far-red light increased leaf length and width, which was associated with increased projected canopy size (PCS). The higher PCS was associated with increased cumulative incident light received by plants, which increased dry matter accumulation. In the perpendicular gradient study, far-red light was 57% and 183% more effective at increasing the amount of light received by the plant, as well as 92.5% and 162% more effective at increasing plant biomass at the early and late harvests, respectively, as compared to PPFD. Light use efficiency (LUE, biomass/mol incident light) was generally negatively correlated with specific leaf area (SLA). Far-red light provided by LEDs increases the canopy size to capture more light to drive photosynthesis and shows promise for inclusion in the growth light spectrum for lettuce under sole-source lighting.

15.
Plants (Basel) ; 9(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927709

ABSTRACT

Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa 'Green Towers') were measured in a growth chamber at DLIs of 15 and 20 mol m-2 d-1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 µmol m-2 s-1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 µmol m-2 s-1 as PPFD increased from 189 to 794 µmol m-2 s-1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m-2 d-1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m-2 d-1 with a DLI of 15 mol m-2 d-1 and 5.78 mol m-2 d-1 with a DLI of 20 mol m-2 d-1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.

16.
Physiol Plant ; 167(1): 21-33, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30203475

ABSTRACT

Linear electron transport depends on balanced excitation of photosystem I and II. Far-red light preferentially excites photosystem I (PSI) and can enhance the photosynthetic efficiency when combined with light that over-excites photosystem II (PSII). The efficiency of different wavelengths of far-red light exciting PSI was quantified by measuring the change in quantum yield of PSII (ΦPSII ) of lettuce (Lactuca sativa) under red/blue light with narrowband far-red light added (from 678 to 752 nm, obtained using laser diodes). The ΦPSII of lettuce increased with increasing wavelengths of added light from 678 to 703 nm, indicating longer wavelengths within this region are increasingly used more efficiently by PSI than by PSII. Adding 721 nm light resulted in similar ΦPSII as adding 703 nm light, but ΦPSII tended to decrease as wavelength increased from 721 to 731 nm, likely due to decreasing absorptance and low photon energy. Adding 752 nm light did not affect ΦPSII . Leaf chlorophyll fluorescence light response measurements showed lettuce had higher ΦPSII under halogen light (rich in far-red) than under red/blue light (which over-excites PSII). Far-red light is more photosynthetically active than commonly believed, because of its synergistic interaction with light of shorter wavelengths.


Subject(s)
Light , Chlorophyll/metabolism , Lactuca/metabolism , Lactuca/radiation effects , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism
17.
J Plant Physiol ; 209: 115-122, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28039776

ABSTRACT

The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (ΦPSII) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in ΦPSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on ΦPSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in ΦPSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in ΦPSII by far-red light was associated with an increase in net photosynthesis (Pn). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII.


Subject(s)
Light , Photochemical Processes/radiation effects , Photosynthesis/radiation effects , Chlorophyll/metabolism , Fluorescence , Lactuca/physiology , Lactuca/radiation effects , Photosystem II Protein Complex/metabolism
18.
J Nematol ; 46(4): 352-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25580028

ABSTRACT

Greenhouse tests were conducted to evaluate (i) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark-adapted quantum yield of photosystem II, and leaf area; and (ii) the extent to which moderate or high levels of resistance to M. incognita influenced these effects. Cultivars FiberMax 960 BR (susceptible to M. incognita) and Stoneville 5599 BR (moderately resistant) were tested together in three trials, and PD94042 (germplasm, susceptible) and 120R1B1 (breeding line genetically similar to PD94042, but highly resistant) were paired in two additional trials. Inoculation with M. incognita generally resulted in increases in root gall ratings and egg counts per gram of root compared with the noninoculated control, as well as reductions in plant dry weight, root weight, leaf area, boll number, and boll dry weight, thereby confirming that growth of our greenhouse-grown plants was reduced in the same ways that would be expected in field-grown plants. In all trials, M. incognita caused reductions in height-to-node ratios. Nematode infection consistently reduced the area under the height-to-node ratio curves for all genotypes, and these reductions were similar for resistant and susceptible genotypes (no significant genotype × inoculation interaction). Our study is the first to show that infection by M. incognita is associated with reduced chlorophyll content in cotton leaves, and the reduction in the resistant genotypes was similar to that in the susceptible genotypes (no interaction). The susceptible PD94042 tended to have increased leaf temperature compared with the genetically similar but highly resistant 120R1B1 (P < 0.08), likely attributable to increased water stress associated with M. incognita infection.

19.
J Exp Bot ; 63(18): 6335-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23077204

ABSTRACT

Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m(3)·m(-3)) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (g(s)) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψ(leaf)). Leaf ABA concentration increased with decreasing midday Ψ(leaf) and was negatively correlated with g(s) (r = -0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m(3)•m(-3)), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψ(leaf) after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression.


Subject(s)
Abscisic Acid/genetics , Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Petunia/physiology , Desiccation , Expressed Sequence Tags , Petunia/genetics , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stomata , Polymerase Chain Reaction , RNA, Plant/metabolism , Signal Transduction , Stress, Physiological , Water/metabolism
20.
Physiol Plant ; 143(2): 166-77, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21645003

ABSTRACT

Our understanding of plant responses to drought has improved over the decades. However, the importance of the rate of drought imposition on the response is still poorly understood. To test the importance of the rate at which drought stress develops, whole-plant photosynthesis (P(net) ), respiration (R(dark) ), daily carbon gain (DCG), daily evapotranspiration (DET) and water use efficiency (WUE) of vinca (Catharanthus roseus), subjected to different drought imposition rates, were investigated. We controlled the rate at which the substrate dried out with an automated irrigation system that allowed pot weight to decrease gradually throughout the drying period. Fast, intermediate and slow drying treatments reached their final pot weight [500 g, substrate water content (θ) ≈ 0.10 m³ m(-3) ] after 3.1, 6.6 and 10 days, respectively. Although all drying treatments decreased P(net) and R(dark) , slow drying reduced P(net) and R(dark) less than fast drying. At a θ < 0.10 m³ m(-3) , DCG and DET in the slow drying treatment were reduced by ≈50%, whereas DCG and DET in the fast drying treatment were reduced by 85 and 70% at a θ of 0.16 m(3) m(-3) . Plants exposed to slow drought imposition maintained a high WUE, even at θ < 0.10 m³ m(-3) . Overall, physiological responses to low θ were less severe in plants subjected to slow drying as compared with fast drying, even though the final θ was lower for plants exposed to slow drying. This suggests that the rate at which drought stress develops has important implications for the level of acclimation that occurs.


Subject(s)
Acclimatization , Catharanthus/physiology , Droughts , Photosynthesis , Stress, Physiological , Carbon/metabolism , Carbon Dioxide/metabolism , Catharanthus/growth & development , Catharanthus/metabolism , Cell Respiration , Osmosis , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Stomata/metabolism , Plant Stomata/physiology , Plant Transpiration , Time Factors , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...