Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Conserv Biol ; 20(4): 1051-61, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16922222

ABSTRACT

Scenario planning is a promising tool for dealing with uncertainty, but it has been underutilized in ecology and conservation. The use of scenarios to explore ecological dynamics of alternative futures has been given a major boost by the recently completed Millennium Ecosystem Assessment, a 4-year initiative to investigate relationships between ecosystem services and human well-being at multiple scales. Scenarios, as descriptive narratives of pathways to the future, are a mechanism for improving the understanding and management of ecological and social processes by scientists and decision makers with greater flexibility than conventional techniques could afford. We used scenarios in one of the Millennium Ecosystem Assessment's subglobal components to explore four possible futures in a Southern African river basin. Because of its ability to capture spatial and temporal dynamics, the scenario exercise revealed key trade-offs in ecosystem services in space and time and the importance of a multiple-scale scenario design. At subglobal scales, scenarios are a powerful vehicle for communication and engagement of decision makers, especially when designed to identify responses to specific problems. Scenario planning has the potential to be a critical ingredient in conservation as calls are increasingly made for the field to help define and achieve sustainable visions for the future.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Rivers , Conservation of Natural Resources/legislation & jurisprudence , Forecasting/methods , Models, Biological , Policy Making , South Africa
4.
Nature ; 427(6970): 145-8, 2004 Jan 08.
Article in English | MEDLINE | ID: mdl-14712274

ABSTRACT

Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.


Subject(s)
Biodiversity , Greenhouse Effect , Models, Theoretical , Animals , Carbon/metabolism , Conservation of Natural Resources , Geography , Risk Assessment , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...