Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Part Fibre Toxicol ; 15(1): 15, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29642936

ABSTRACT

BACKGROUND: Titanium dioxide (TiO2) is produced at high volumes and applied in many consumer and food products. Recent toxicokinetic modelling indicated the potential of TiO2 to accumulate in human liver and spleen upon daily oral exposure, which is not routinely investigated in chronic animal studies. A health risk from nanosized TiO2 particle consumption could not be excluded then. RESULTS: Here we show the first quantification of both total titanium (Ti) and TiO2 particles in 15 post-mortem human livers and spleens. These low-level analyses were enabled by the use of fully validated (single particle) inductively coupled plasma high resolution mass spectrometry ((sp)ICP-HRMS) detection methods for total Ti and TiO2 particles. The presence of TiO2 in the particles in tissues was confirmed by Scanning Electron Microscopy with energy dispersive X-ray spectrometry. CONCLUSIONS: These results prove that TiO2 particles are present in human liver and spleen, with ≥24% of nanosize (< 100 nm). The levels are below the doses regarded as safe in animals, but half are above the dose that is deemed safe for liver damage in humans when taking into account several commonly applied uncertainty factors. With these new and unique human data, we remain with the conclusion that health risks due to oral exposure to TiO2 cannot be excluded.


Subject(s)
Liver/chemistry , Nanoparticles/analysis , Spleen/chemistry , Titanium/analysis , Aged , Aged, 80 and over , Autopsy , Female , Humans , Limit of Detection , Liver/ultrastructure , Male , Microscopy, Electrochemical, Scanning , Middle Aged , Risk Assessment , Spectrometry, X-Ray Emission , Spleen/ultrastructure , Tissue Distribution
2.
Arch Toxicol ; 87(3): 505-15, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23052197

ABSTRACT

The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa (-/-) p53 (+/-) primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa (-/-) p53 (+/-) hepatocytes only. Here, we investigated pathway regulation upon in vivo B[a]P exposure of wild-type and Xpa (-/-) p53 (+/-) mice. In vivo transcriptomics analysis revealed a limited gene expression response in mouse livers, but with a significant induction of DNA replication and apoptotic/anti-apoptotic cellular responses in Xpa (-/-) p53 (+/-) livers only. In order to be able to make a meaningful in vivo-in vitro comparison we estimated internal in vivo B[a]P concentrations using DNA adduct levels and physiologically based kinetic modeling. Based on these results, the in vitro concentration that corresponded best with the internal in vivo dose was chosen. Comparison of in vivo and in vitro data demonstrated similarities in transcriptomics response: xenobiotic metabolism, lipid metabolism and oxidative stress. However, we were unable to detect cancer-related pathways in either wild-type or Xpa (-/-) p53 (+/-) exposed livers, which were previously found to be induced by B[a]P in Xpa (-/-) p53 (+/-) primary hepatocytes. In conclusion, we showed parallels in gene expression responses between livers and primary hepatocytes upon exposure to equivalent concentrations of B[a]P. Furthermore, we recommend considering toxicokinetics when modeling a complex in vivo endpoint with in vitro models.


Subject(s)
Benzo(a)pyrene/toxicity , Carcinogenicity Tests/methods , Carcinogens/toxicity , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hepatocytes/drug effects , Liver Neoplasms/chemically induced , Liver/drug effects , Animals , Apoptosis/drug effects , Apoptosis/genetics , Benzo(a)pyrene/pharmacokinetics , Carcinogens/pharmacokinetics , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Computer Simulation , DNA Adducts/metabolism , DNA Replication/drug effects , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Hepatocytes/pathology , High-Throughput Screening Assays , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Primary Cell Culture , Risk Assessment , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/genetics , Xeroderma Pigmentosum Group A Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...