Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 97, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821988

ABSTRACT

Current Influenza virus vaccines primarily induce antibody responses against variable epitopes in hemagglutinin (HA), necessitating frequent updates. However, antibodies against neuraminidase (NA) can also confer protection against influenza, making NA an attractive target for the development of novel vaccines. In this study, we aimed to enhance the immunogenicity of recombinant NA antigens by presenting them multivalently on a nanoparticle carrier. Soluble tetrameric NA antigens of the N1 and N2 subtypes, confirmed to be correctly folded by cryo-electron microscopy structural analysis, were conjugated to Mi3 self-assembling protein nanoparticles using the SpyTag-SpyCatcher system. Immunization of mice with NA-Mi3 nanoparticles induced higher titers of NA-binding and -inhibiting antibodies and improved protection against a lethal challenge compared to unconjugated NA. Additionally, we explored the co-presentation of N1 and N2 antigens on the same Mi3 particles to create a mosaic vaccine candidate. These mosaic nanoparticles elicited antibody titers that were similar or superior to the homotypic nanoparticles and effectively protected against H1N1 and H3N2 challenge viruses. The NA-Mi3 nanoparticles represent a promising vaccine candidate that could complement HA-directed approaches for enhanced potency and broadened protection against influenza A virus.

2.
mBio ; 9(2)2018 04 17.
Article in English | MEDLINE | ID: mdl-29666283

ABSTRACT

Picornaviruses induce dramatic rearrangements of endomembranes in the cells that they infect to produce dedicated platforms for viral replication. These structures, termed replication organelles (ROs), have been well characterized for the Enterovirus genus of the Picornaviridae However, it is unknown whether the diverse RO morphologies associated with enterovirus infection are conserved among other picornaviruses. Here, we use serial electron tomography at different stages of infection to assess the three-dimensional architecture of ROs induced by encephalomyocarditis virus (EMCV), a member of the Cardiovirus genus of the family of picornaviruses that is distantly related. Ultrastructural analyses revealed connections between early single-membrane EMCV ROs and the endoplasmic reticulum (ER), establishing the ER as a likely donor organelle for their formation. These early single-membrane ROs appear to transform into double-membrane vesicles (DMVs) as infection progresses. Both single- and double-membrane structures were found to support viral RNA synthesis, and progeny viruses accumulated in close proximity, suggesting a spatial association between RNA synthesis and virus assembly. Further, we explored the role of phosphatidylinositol 4-phosphate (PI4P), a critical host factor for both enterovirus and cardiovirus replication that has been recently found to expedite enterovirus RO formation rather than being strictly required. By exploiting an EMCV escape mutant, we found that low-PI4P conditions could also be overcome for the formation of cardiovirus ROs. Collectively, our data show that despite differences in the membrane source, there are striking similarities in the biogenesis, morphology, and transformation of cardiovirus and enterovirus ROs, which may well extend to other picornaviruses.IMPORTANCE Like all positive-sense RNA viruses, picornaviruses induce the rearrangement of host cell membranes to form unique structures, or replication organelles (ROs), that support viral RNA synthesis. Here, we investigate the architecture and biogenesis of cardiovirus ROs and compare them with those induced by enteroviruses, members of the well-characterized picornavirus genus Enterovirus The origins and dynamic morphologies of cardiovirus ROs are revealed using electron tomography, which points to the endoplasmic reticulum as the donor organelle usurped to produce single-membrane tubules and vesicles that transform into double-membrane vesicles. We show that PI4P, a critical lipid for cardiovirus and enterovirus replication, is not strictly required for the formation of cardiovirus ROs, as functional ROs with typical morphologies are formed under phosphatidylinositol 4-kinase type III alpha (PI4KA) inhibition in cells infected with an escape mutant. Our data show that the transformation from single-membrane structures to double-membrane vesicles is a conserved feature of cardiovirus and enterovirus infections that likely extends to other picornavirus genera.


Subject(s)
Encephalomyocarditis virus/physiology , Organelle Biogenesis , Organelles/virology , Phosphatidylinositol Phosphates/metabolism , Virus Replication , Electron Microscope Tomography , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , HeLa Cells , Humans , Organelles/ultrastructure
3.
mSphere ; 1(4)2016.
Article in English | MEDLINE | ID: mdl-27390781

ABSTRACT

Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.

4.
Sci Rep ; 3: 3058, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24162312

ABSTRACT

The emergence of the novel H7N9 influenza A virus (IAV) has caused global concerns about the ability of this virus to spread between humans. Analysis of the receptor-binding properties of this virus using a recombinant protein approach in combination with fetuin-binding, glycan array and human tissue-binding assays demonstrates increased binding of H7 to both α2-6 and α2-8 sialosides as well as reduced binding to α2-3-linked SIAs compared to a closely related avian H7N9 virus from 2008. These differences could be attributed to substitutions Q226L and G186V. Analysis of the enzymatic activity of the neuraminidase N9 protein indicated a reduced sialidase activity, consistent with the reduced binding of H7 to α2-3 sialosides. However, the novel H7N9 virus still preferred binding to α2-3- over α2-6-linked SIAs and was not able to efficiently bind to epithelial cells of human trachea in contrast to seasonal IAV, consistent with its limited human-to-human transmission.


Subject(s)
Fetuins/metabolism , Hemagglutinins/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Neuraminidase/metabolism , Epithelial Cells/metabolism , Fetuins/chemistry , HEK293 Cells , Hemagglutinins/genetics , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Mutation , Neuraminidase/genetics , Polysaccharides/metabolism , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Trachea/metabolism , Trachea/pathology , Trachea/virology
5.
J Virol ; 83(1): 58-64, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18922875

ABSTRACT

We have discovered two metal ion binding compounds, pyrithione (PT) and hinokitiol (HK), that efficiently inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. Early stages of virus infection are unaffected by these compounds. However, the cleavage of the cellular eukaryotic translation initiation factor eIF4GI by the rhinoviral 2A protease was abolished in the presence of PT and HK. We further show that these compounds inhibit picornavirus replication by interfering with proper processing of the viral polyprotein. In addition, we provide evidence that these structurally unrelated compounds lead to a rapid import of extracellular zinc ions into cells. Imported Zn(2+) was found to be localized in punctate structures, as well as in mitochondria. The observed elevated level of zinc ions was reversible when the compounds were removed. As the antiviral activity of these compounds requires the continuous presence of the zinc ionophore PT, HK, or pyrrolidine-dithiocarbamate, the requirement for zinc ions for the antiviral activity is further substantiated. Therefore, an increase in intracellular zinc levels provides the basis for a new antipicornavirus mechanism.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus/drug effects , Mengovirus/drug effects , Monoterpenes/pharmacology , Pyridines/pharmacology , Rhinovirus/drug effects , Thiones/pharmacology , Tropolone/analogs & derivatives , Cytosol/chemistry , Eukaryotic Initiation Factor-4G/metabolism , HeLa Cells , Humans , Mitochondria/chemistry , Polyproteins/metabolism , Tropolone/pharmacology , Viral Proteins/metabolism , Virus Replication/drug effects , Zinc/metabolism
6.
J Gen Virol ; 88(Pt 4): 1206-1217, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17374764

ABSTRACT

Previously, it was shown that pyrrolidine dithiocarbamate (PDTC) inhibits proteolytic polyprotein processing and replication of human rhinovirus by transporting metal ions into cells. Here, it is shown that PDTC also inhibits replication of two other picornaviruses: coxsackievirus B3 (CVB3), a closely related virus that belongs to the genus Enterovirus, and mengovirus, an encephalomyocarditis virus strain that belongs to the genus Cardiovirus, and that this inhibition is due to the dithiocarbamate moiety of the compound. Making use of subgenomic replicons, evidence is provided that PDTC inhibits replication of these two viruses by disturbing viral RNA synthesis. Furthermore, it is shown that PDTC transports zinc ions into cells and that these zinc ions play an important role in the antiviral activity mediated by PDTC. Finally, it is shown that PDTC interferes with proteolytic processing of the polyproteins of both CVB3 and mengovirus, but that the underlying mechanism between these two viruses differs. In CVB3-infected cells, PDTC interferes strongly with the proteolytic activity of 3CD(pro), as shown by the impaired production of the mature capsid proteins as well as the autocleavage of 3CD(pro) into 3C(pro) and 3D(pol). In mengovirus-infected cells, however, PDTC had no effect on the proteolytic production of capsid proteins or the autocleavage of 3CD(pro). Instead, PDTC caused the accumulation of a high-molecular-mass precursor protein, due to an impairment in the primary 'break' that normally occurs at the 2A-2B junction. Thus, PDTC disturbs polyprotein processing and replication of two groups of picornaviruses, enteroviruses and cardioviruses, but the underlying mechanism is different.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus B, Human/drug effects , Mengovirus/drug effects , Protein Processing, Post-Translational/drug effects , Pyrrolidines/pharmacology , RNA, Viral/biosynthesis , Thiocarbamates/pharmacology , Zinc/metabolism , 3C Viral Proteases , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Cysteine Endopeptidases , Enterovirus B, Human/physiology , Mengovirus/physiology , Polyproteins/biosynthesis , Viral Proteins/antagonists & inhibitors , Viral Proteins/biosynthesis , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...